Search results for: smart kids coacher
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1429

Search results for: smart kids coacher

589 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 196
588 An Invertebrate-Type Lysozyme from Chinese Mitten Crab Eriocheir Sinensis: Cloning and Characterization

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Lysozyme is a catalytic enzyme that performs bacterial cell lysis by cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan in cell walls. In the present study, an invertebrate-type (i-type) lysozyme gene was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsLysozyme) based on PCR-based rapid amplification of cDNA ends (RACE) technology. The full-length cDNA of EsLysozyme was of 831 bp. SMART and SIGNALP 3.0 program analysis revealed that EsLysozyme contained a signal peptide and a destabilase domain. The five amino acid residues (Tyr63, Trp64, Tyr91, His110, Pro114) and the conserved motif GSLSCG(P/Y)FQI and CL(E/L/R/H)C(I/M)C in i-type lysozymes were also found in EsLysozyme. The high similarity of EsLysozyme with L. vannamei lysozymes and phylogenetic analysis suggested that EsLysozyme should be a new member of i-type lysozyme family.

Keywords: i-type lysozyme, Eriocheir sinensis, cloning, characterization

Procedia PDF Downloads 297
587 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt

Authors: H. Hafez, A. Mekkawy, R. Rostom

Abstract:

Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.

Keywords: rammed earth, thermal insulation, indoor air quality, design builder

Procedia PDF Downloads 147
586 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 129
585 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 136
584 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor

Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen

Abstract:

In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.

Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.

Procedia PDF Downloads 254
583 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 101
582 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire

Authors: Saurabh Shukla, G. N. Pandey

Abstract:

The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.

Keywords: deployment, sensors, wireless sensor networks, forest fires

Procedia PDF Downloads 437
581 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change

Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui

Abstract:

Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.

Keywords: behavioural change, ICT technologies, water consumption, water conservation

Procedia PDF Downloads 337
580 Effects of AI-driven Applications on Bank Performance in West Africa

Authors: Ani Wilson Uchenna, Ogbonna Chikodi

Abstract:

This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.

Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)

Procedia PDF Downloads 16
579 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 127
578 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 517
577 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection

Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor

Abstract:

Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.

Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing

Procedia PDF Downloads 206
576 The Smart Record and Replay Mechanism for Android

Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu, Hsiao-Han Huang

Abstract:

The number of Android applications (Apps) has increased rapidly in recent years. In order to get better programmatic control over Apps, we designed a record-and-replay mechanism to record Android input events and accessibility service events then make shortcuts. The shortcut is useful for complicated routine works and to Android beginners. We also generated graphical user interface (GUI) API by these shortcuts. GUI API helps developers make integrated Apps which can control other third-party Apps even if the official API is not offered by their providers. We demonstrated the usage of GUI API with two integrated Apps: Universal Bank App and Universal Communication App. Universal Bank App integrates three accounts from different banks and Universal Communication App integrates Line with WhatsApp. Both of them show the advantage of extendable GUI API. Furthermore, using our mechanism, shortcuts could replay almost all of the Top-100 Apps on Google Play correctly. In sum, the approach we present can help both Android developers and general users.

Keywords: graphical user interface, GUI API, record-and-replay, third-party apps

Procedia PDF Downloads 408
575 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 225
574 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: pantograph models, phase plots, structural health monitoring, damage detection

Procedia PDF Downloads 363
573 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
572 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 82
571 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 89
570 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
569 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 183
568 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention

Authors: Ashish Kumar, Kaptan Singh, Amit Saxena

Abstract:

Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.

Keywords: K-nearest neighbor, random forest, decision tree, pre-processing

Procedia PDF Downloads 94
567 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System

Authors: Tamar Trop

Abstract:

Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.

Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure

Procedia PDF Downloads 341
566 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 415
565 Polymer Application in Fashion and Textile Engineering

Authors: Fatemeh Karimi

Abstract:

The fashion and textile industry is undergoing a profound transformation, with polymers playing an increasingly pivotal role in driving innovation and sustainability. This paper explores the application of polymers in fashion and textile engineering, focusing on their impact on material properties, sustainability, and the future of garment production. Polymers, both synthetic and bio-based, offer unique opportunities to enhance the performance, durability, and environmental footprint of textiles. By examining recent advancements in polymer science and their integration into fashion design and production, we provide insights into how these materials are reshaping the industry. This paper also discusses the challenges and opportunities associated with the use of polymers, particularly in the context of sustainable fashion and circular economy practices. Through case studies and industry examples, we highlight the innovative ways in which polymers are being utilized to meet the evolving demands of consumers and the industry's sustainability goals.

Keywords: polymer textiles, sustainable fashion, bio-based polymers, smart textiles, fashion innovation, circular economy, textile engineering

Procedia PDF Downloads 23
564 Forensic Analysis of Thumbnail Images in Windows 10

Authors: George Kurian, Hongmei Chi

Abstract:

Digital evidence plays a critical role in most legal investigations. In many cases, thumbnail databases show important information in that investigation. The probability of having digital evidence retrieved from a computer or smart device has increased, even though the previous user removed data and deleted apps on those devices. Due to the increase in digital forensics, the ability to store residual information from various thumbnail applications has improved. This paper will focus on investigating thumbnail information from Windows 10. Thumbnail images of interest in forensic investigations may be intact even when the original pictures have been deleted. It is our research goal to recover useful information from thumbnails. In this research project, we use various forensics tools to collect left thumbnail information from deleted videos or pictures. We examine and describe the various thumbnail sources in Windows and propose a methodology for thumbnail collection and analysis from laptops or desktops. A machine learning algorithm is adopted to help speed up content from thumbnail pictures.

Keywords: digital forensic, forensic tools, soundness, thumbnail, machine learning, OCR

Procedia PDF Downloads 134
563 The ‘Fun, Move, Play’ Project: Qualitative and Quantitative Findings from Irish Primary School Children (6-8 Years), Parents and Teachers

Authors: Jemma McGourty, Brid Delahunt, Fiona Hackett, Sharon Courtney, Richard English, Graham Russell, Sinéad O’Connor

Abstract:

Fundamental Movement Skills (FMS) mastery is considered essential for children’s ongoing, meaningful engagement in Physical Activity (PA). There has been a dearth of Irish research on baseline FMS and their development by means of intervention in young primary school children. In addition, as children’s participation in PA is heavily influenced by both parents and teachers, it is imperative to understand their attitudes and perceptions towards PA participation and its’ promotion in children. The ‘Fun, Move, Play’ Project investigated the effect of a 6-week play based PA intervention on primary school children’s (aged 6-8 years) FMS while also exploring the attitudes and perceptions of their parents and teachers towards PA participation. The FMS intervention utilised a pre-post quasi-experimental design to determine the effect of a 6-week play based PA intervention (devised from the iCoach Kids Programme) on 176 primary school children’s FMS (N = 176: 90 girls and 86 boys; M = 7.2 years; SD = 0.48). Objective measures of 7 FMS (run, skip, vertical jump, static balance, stationary dribble, catch, kick) were made using a combination of the TGMD2 and Get Skilled, Get Active resources. One hundred parents (87 mothers; 13 fathers; M=36 years; SD=5.45) and 90 teachers (67 females; 23 males) completed surveys investigating their attitudes and perceptions towards PA participation. In addition, 19 of these parents and 9 of these teachers participated in semi-structured qualitative interviews to explore, in more depth, their views and perceptions of PA participation. Both the FMS data set and survey responses were analysed using SPSS version 23, using appropriate statistical analysis. A thematic analysis framework was used to analyse the qualitative findings. A significant improvement was observed in the children’s overall FMS score pre-post intervention (t = 16.67; df = 175; p < 0.001), while there were also significant improvements in each of the seven individual FMS measured in the children, pre-post intervention. Findings from the parent surveys and interviews indicated that parents had positive attitudes towards PA, viewed it as important and supported their child’s PA participation. However, a lack of knowledge regarding the amount and intensity of PA that children should participate in emerged as a recurrent finding. Also, there was a significant positive correlation between the PA levels of parents’ and their children (r = .41; n = 100; p < .001). Arising from the teachers’ surveys and interviews was a positive attitude towards PA and the impact that it has on a child’s health and well-being. They also reported feeling more confident teaching certain aspects of the PE curriculum (games and sports) compared to others (gymnastics, dance), where they appreciate working with specialist practitioners. Conclusion: A short-term PA intervention has a positive effect on children’s FMS. While parents are supportive of their child’s PA participation, there is a knowledge gap regarding National PA guidelines for children. Teachers appreciate the importance of PA in children, but face a number of challenges in its implementation and promotion.

Keywords: fundamental movement skills, parents attitudes to physical activity, short-term intervention, teachers attitudes to physical activity

Procedia PDF Downloads 179
562 Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades

Authors: Thanasis K. Barlas, Helge A. Madsen

Abstract:

A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R\&D project following almost 10 years of innovative research in this field. The full-scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risoe Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the active flap system (AFS) are described. The general description and objectives of the rotating test rig at the Risoe campus of DTU are presented, as used for the aeroelastic testing of the AFS in the recently finalized INDUFLAP project. The general description and objectives are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady flap step and azimuth control flap cases are presented.

Keywords: morphing, adaptive, flap, smart blade, wind turbine

Procedia PDF Downloads 398
561 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 369
560 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack

Authors: Faraji Sepideh

Abstract:

Nowadays, purchase rate of the smart device is increasing and user authentication is one of the important issues in information security. Alphanumeric strong passwords are difficult to memorize and also owners write them down on papers or save them in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an alternative to alphanumeric password that users choose images as a password. This type of password is easier to use and memorize and also more secure from pervious password types. In this paper we have designed a more secure graphical password system to prevent shoulder surfing, smudge and brute force attack. This scheme is a combination of two types of graphical passwords recognition based and Cued recall based. Evaluation the usability and security of our proposed scheme have been explained in conclusion part.

Keywords: brute force attack, graphical password, shoulder surfing attack, smudge attack

Procedia PDF Downloads 162