Search results for: multinomial endogenous switching regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3889

Search results for: multinomial endogenous switching regression

3049 Regional Flood-Duration-Frequency Models for Norway

Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu

Abstract:

Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.

Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV

Procedia PDF Downloads 72
3048 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 516
3047 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 130
3046 A Literature Review on Banks’ Profitability and Risk Adjustment Decisions

Authors: Libena Cernohorska, Barbora Sutorova, Petr Teply

Abstract:

There are pending discussions over an impact of global regulatory efforts on banks. In this paper we present a literature review on the profitability-risk-capital relationship in banking. Research papers dealing with this topic can be divided into two groups: the first group focusing on a capital-risk relationship and the second group analyzing a capital-profitability relationship. The first group investigates whether the imposition of stricter capital requirements reduces risk-taking incentives of banks based on a simultaneous equations model. Their model pioneered the idea that the changes in both capital and risk have endogenous and exogenous components. The results obtained by the authors indicate that changes in the capital level are positively related to the changes in asset risk. The second group of the literature concentrating solely on the relationship between the level of held capital and bank profitability is limited. Nevertheless, there are a lot of studies dealing with the banks’ profitability as such, where bank capital is very often included as an explanatory variable. Based on the literature review of dozens of relevant papers in this study, an empirical research on banks’ profitability and risk adjustment decisions under new banking rules Basel III rules can be easily undertaken.

Keywords: bank, Basel III, capital, decision making, profitability, risk, simultaneous equations model

Procedia PDF Downloads 501
3045 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance

Authors: Santi Gopal Maji, R. A. J. Syngkon

Abstract:

The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.

Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries

Procedia PDF Downloads 195
3044 Optimization Design of Single Phase Inverter Connected to the Grid

Authors: Linda Hassaine, Abdelhamid Mraoui, Mohamed Rida Bengourina

Abstract:

In grid-connected photovoltaic systems, significant improvements can be carried out in the design and implementation of inverters: reduction of harmonic distortion, elimination of the DC component injected into the grid and the proposed control. This paper proposes a control strategy based on PWM switching patterns for an inverter for the photovoltaic system connected to the grid in order to control the injected current. The current injected must be sinusoidal with reduced harmonic distortion. An additional filter is designed to reduce high-order harmonics on the output side. This strategy exhibits the advantages: Simplicity, reduction of harmonics, the size of the line filter, reduction of the memory requirements and power calculation for the control.

Keywords: control, inverters, LCL filter, grid-connected photovoltaic system

Procedia PDF Downloads 327
3043 Bridging Livelihood and Conservation: The Role of Ecotourism in the Campo Ma’an National Park, Cameroon

Authors: Gadinga Walter Forje, Martin Ngankam Tchamba, Nyong Princely Awazi, Barnabas Neba Nfornka

Abstract:

Ecotourism is viewed as a double edge sword for the enhancement of conservation and local livelihood within a protected landscape. The Campo Ma’an National Park (CMNP) adopted ecotourism in its management plan as a strategic axis for better management of the park. The growing importance of ecotourism as a strategy for the sustainable management of CMNP and its environs requires adequate information to bolster the sector. This study was carried out between November 2018 and September 2021, with the main objective to contribute to the sustainable management of the CMNP through suggestions for enhancing the capacity of ecotourism in and around the park. More specifically, the study aimed at; 1) Analyse the governance of ecotourism in the CMNP and its surrounding; 2) Assessing the impact of ecotourism on local livelihood around the CMNP; 3) Evaluating the contribution of ecotourism to biodiversity conservation in and around the CMNP; 4) Evaluate the determinants of ecotourism possibilities in achieving sustainable livelihood and biodiversity conservation in and around the CMNP. Data were collected from both primary and secondary sources. Primary data were obtained from household surveys (N=124), focus group discussions (N=8), and key informant interviews (N=16). Data collected were coded and imputed into SPSS (version 19.0) software and Microsoft Excel spreadsheet for both quantitative and qualitative analysis. Findings from the Chi-square test revealed overall poor ecotourism governance in and around the CMNP, with benefit sharing (X2 = 122.774, p <0.01) and conflict management (X2 = 90.839, p<0.01) viewed to be very poor. For the majority of the local population sampled, 65% think ecotourism does not contribute to local livelihood around CMNP. The main factors influencing the impact of ecotourism around the CMNP on the local population’s livelihood were gender (logistic regression (β) = 1.218; p = 0.000); and level of education (logistic regression (β) = 0.442; p = 0.000). Furthermore, 55.6% of the local population investigated believed ecotourism activities do not contribute to the biodiversity conservation of CMNP. Spearman correlation between socio-economic variables and ecotourism impact on biodiversity conservation indicated relationships with gender (r = 0.200, p = 0.032), main occupation (r = 0.300 p = 0.012), time spent in the community (r = 0.287 p = 0.017), and number of children (r =-0.286 p = 0.018). Variables affecting ecotourism impact on biodiversity conservation were age (logistic regression (β) = -0.683; p = 0.037) and gender (logistic regression (β) = 0.917; p = 0.045). This study recommends the development of ecotourism-friendly policies that can accelerate Public Private Partnership for the sustainable management of the CMNP as a commitment toward good governance. It also recommends the development of gender-sensitive ecotourism packages, with fair opportunities for rural women and more parity in benefit sharing to improve livelihood and contribute more to biodiversity conservation in and around the Park.

Keywords: biodiversity conservation, Campo Ma’an national park, ecotourism, ecotourism governance, rural livelihoods, protected area management

Procedia PDF Downloads 122
3042 Factors Contributing to Farmers’ Attitude Towards Climate Adaptation Farming Practices: A Farm Level Study in Bangladesh

Authors: Md Rezaul Karim, Farha Taznin

Abstract:

The purpose of this study was to assess and describe the individual and household characteristics of farmers, to measure the attitude of farmers towards climate adaptation farming practices and to explore the individual and household factors contributing in predicting their attitude towards climate adaptation farming practices. Data were collected through personal interviews using a pre-tested interview schedule. The data collection was done at Biral Upazila under Dinajpur district in Bangladesh from 1st November to 15 December 2018. Besides descriptive statistical parameters, Pearson’s Product Moment Correlation Coefficient (r), multiple regression and step-wise multiple regression analysis were used for the statistical analysis. Findings indicated that the highest proportion (77.6 percent) of the farmers had moderately favorable attitudes, followed by only 11.2 percent with highly favorable attitudes and 11.2 percent with slightly favorable attitudes towards climate adaptation farming practices. According to the computed correlation coefficients (r), among the 10 selected factors, five of them, such as education of household head, farm size, annual household income, organizational participation, and information access by extension services, had a significant relationship with the attitude of farmers towards climate-smart practices. The step-wise multiple regression results showed that two characteristics as education of household head and information access by extension services, contributed 26.2% and 5.1%, respectively, in predicting farmers' attitudes towards climate adaptation farming practices. In addition, more than two-thirds of farmers cited their opinion to the problems in response to ‘price of vermi species is high and it is not easily available’ as 1st ranked problem, followed by ‘lack of information for innovative climate-smart technologies’. This study suggests that policy implications are necessary to promote extension education and information services and overcome the obstacles to climate adaptation farming practices. It further recommends that research study should be conducted in diverse contexts of nationally or globally.

Keywords: factors, attitude, climate adaptation, farming practices, Bangladesh

Procedia PDF Downloads 88
3041 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 67
3040 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
3039 Analyzing Preservice Teachers’ Attitudes toward Technology

Authors: Ahmet Oguz Akturk, Kemal Izci, Gurbuz Caliskan, Ismail Sahin

Abstract:

Rapid developments in technology are to necessitate societies to closely follow technological developments and change themselves to adopt those developments. It is obvious that one of the areas that are impacted from technological developments is education. Analyzing preservice teachers’ attitudes toward technology is crucial for both educational and professional purposes since teacher candidates are essential for educating future individual living in technological age. In this study, it is aimed to analyze preservice teachers’ attitudes toward technology and some variables (e.g., gender, daily internet usage and possessed technological devices) that predicting those attitudes. In this study, relational survey model used as research method and 329 preservice teachers who are studying in a large university located at the middle part of Turkey are voluntarily participated. Results of the study showed that mostly preservice teachers displayed positive attitudes toward technology while male preservice teachers’ attitudes toward technology was more positive than female preservice teachers. In order to analyze predicting factors for preservice teachers’ attitudes toward technology, stepwise multiple regressions were utilized. The results of stepwise multiple regression showed that daily internet use was the most strong predicting factor for predicting preservice teachers’ attitudes toward technology.

Keywords: attitudes toward technology, preservice teachers, gender, stepwise multiple regression analysis

Procedia PDF Downloads 291
3038 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 372
3037 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 19
3036 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chun-Lang Chang, Chun-Kai Liu

Abstract:

In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.

Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery

Procedia PDF Downloads 324
3035 Analysis of Endogenous Sirevirus in Germinating Barley (Hordeum vulgare L.)

Authors: Nermin Gozukirmizi, Buket Cakmak, Sevgi Marakli

Abstract:

Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant and has been studied as a model plant regarding its short annual life cycle and seven chromosome pairs. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE1 retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (gag, env and rt) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for gag, however, different band patterns were observed among samples for rt and env. The sequencing of SIRE1 gag, env and rt domains revealed 79% similarity for gag, 95% for env and 84% for rt to Ty1-copia retrotransposons. SIRE1 retrotransposon was identified in the soybean genome and has been studied on other plants (maize, rice, tomatoe etc.). This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome.

Keywords: barley, polymorphism, retrotransposon, SIRE1 virus

Procedia PDF Downloads 309
3034 Factors Affecting Expectations and Intentions of University Students’ Mobile Phone Use in Educational Contexts

Authors: Davut Disci

Abstract:

Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance- Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling(SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.

Keywords: education, mobile behavior, mobile learning, technology, Turkey

Procedia PDF Downloads 421
3033 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 64
3032 Factors Affecting Expectations and Intentions of University Students in Educational Context

Authors: Davut Disci

Abstract:

Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.

Keywords: learning technology, instructional technology, mobile learning, technology

Procedia PDF Downloads 452
3031 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry

Authors: Gamze Sekeroglu, Mikail Altan

Abstract:

Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.

Keywords: profitability, regression analysis, inventory management, working capital

Procedia PDF Downloads 336
3030 Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius

Authors: Banu Aytül Ekmekçi

Abstract:

Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity.

Keywords: salinity, stress, vitamin c, antioxidant, NaCl, enzyme

Procedia PDF Downloads 513
3029 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink

Procedia PDF Downloads 534
3028 Association Between Disability and Obesity Status Among US Adults: Findings From 2019-2021 National Health Interview Survey (NHIS)

Authors: Chimuanya Osuji, Kido Uyamasi, Morgan Bradley

Abstract:

Introduction: Obesity is a major risk factor for many chronic diseases, with higher rates occurring among certain populations. Even though disparities in obesity rates exist for those with disabilities, few studies have assessed the association between disability and obesity status. This study aims to examine the association between type of disability and obesity status among US adults during the Covid-19 pandemic (2019-2021). Methods: Data for this cross-sectional study was obtained from the 2019, 2020 and 2021 NHIS. Multinomial logistic regressions were used to assess the relationship between each type of disability and obesity status (reference= normal/underweight). Each model adjusted for demographic, health status and health-related quality of life variables. Statistical analyses were conducted using SAS version 9.4. Results: Of the 82,632 US adults who completed the NHIS in 2019, 2020, and 2021. 8.9% (n= 7,354) reported at least 1 disability-related condition. Respondents reported having a disability across vision (1.5%), hearing (1.5%), mobility (5.3%), communication (0.8%), cognition (2.4%) and self-care (1.1%) domains. After adjusting for covariates, adults with at least 1 disability-related condition were about 30% more likely to have moderate-severe obesity (AOR=1.3; 95% CI=1.11, 1.53). Mobility was the only disability category positively associated with mild obesity (AOR=1.16; 95% CI=1.01, 1.35) and moderate/severe obesity (AOR=1.6; 95% CI=1.35, 1.89). Individuals with vision disability were about 35% less likely to have mild obesity (AOR=0.66; 95% CI=0.51, 0.86) and moderate-severe obesity (AOR=0.66; 95% CI= 0.48, 0.9). Individuals with hearing disability were 28% less likely to have mild obesity (AOR=0.72; 95% CI= 0.56, 0.94). Individuals with communication disability were about 30% less likely to be overweight (AOR=0.66; 95% CI=0.47, 0.93) and 50% less likely to have mild obesity (AOR=0.45; 95% CI= 0.29, 0.71). Individuals with cognitive disability were about 25% less likely to have mild obesity and about 35% less likely to have moderate-severe obesity. Individuals with self-care disability were about 30% less likely to be overweight. Conclusion: Mobility-related disabilities are significantly associated with obesity status among adults residing in the United States. Researchers and policy makers should implement obesity intervention methods that can address the gap in obesity prevalence rates among those with and without disabilities.

Keywords: cognition, disability, mobility, obesity

Procedia PDF Downloads 71
3027 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 462
3026 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure

Authors: Heba Abdelmotaal

Abstract:

This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.

Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression

Procedia PDF Downloads 360
3025 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 188
3024 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 221
3023 Hybrid Control Strategy for Nine-Level Asymmetrical Cascaded H-Bridge Inverter

Authors: Bachir Belmadani, Rachid Taleb, M’hamed Helaimi

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the hybrid pulse-width modulation (HPWM) strategy of a uniform step asymmetrical cascaded H-bridge nine-level Inverter (USACHB9LI). The HPWM approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HPWM controller in feeding a high power induction motor.

Keywords: uniform step asymmetrical cascaded h-bridge high-level inverter, hybrid pwm, sinusoidal pwm, high power induction motor

Procedia PDF Downloads 571
3022 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna

Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn

Abstract:

To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.

Keywords: switched beam, shorted circuit, single element, signal to interference ratio

Procedia PDF Downloads 172
3021 How Social Support, Interaction with Clients and Work-Family Conflict Contribute to Mental Well-Being for Employees in the Human Service System

Authors: Uwe C. Fischer

Abstract:

Mental health and well-being for employees working in the human service system are getting more and more important given the increasing rate of absenteeism at work. Besides individual capacities, social and community factors seem to be important in the working setting. Starting from a demand resource framework including the classical demand control aspects, social support systems, specific demands and resources of the client work, and work-family conflict were considered in the present study. We state hypothetically, that these factors have a meaningful association with the mental quality of life of employees working in the field of social, educational and health sectors. 1140 employees, working in human service organizations (education, youth care, nursing etc.) were asked for strains and resources at work (selected scales from Salutogenetic Subjective Work Assessment SALSA and own new scales for client work), work-family conflict, and mental quality of life from the German Short Form Health Survey. Considering the complex influences of the variables, we conducted a multiple hierarchical regression analysis. One third of the whole variance of the mental quality of life can be declared by the different variables of the model. When the variables concerning social influences were included in the hierarchical regression, the influence of work related control resource decreased. Excessive workload, work-family conflict, social support by supervisors, co-workers and other persons outside work, as well as strains and resources associated with client work had significant regression coefficients. Conclusions: Social support systems are crucial in the social, educational and health related service sector, regarding the influence on mental well-being. Especially the work-family conflict focuses on the importance of the work-life balance. Also the specific strains and resources of the client work, measured with new constructed scales, showed great impact on mental health. Therefore occupational health promotion should focus more on the social factors within and outside the working place.

Keywords: client interaction, human service system, mental health, social support, work-family conflict

Procedia PDF Downloads 440
3020 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 147