Search results for: diagnostic accuracy
3816 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection
Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid
Abstract:
Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.Keywords: features extraction, image segmentation, medical images, tumor detection
Procedia PDF Downloads 1643815 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS
Authors: Eunsu Jang, Kang Park
Abstract:
In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis
Procedia PDF Downloads 3993814 A Method for Precise Vertical Position of the Implant When Using Computerized Surgical Guides and Bone Reduction
Authors: Abraham Finkelman
Abstract:
Computerized Surgical Guides have been proven to be a predictable way to perform dental implants, with a relatively high accuracy in comparison to a treatment plan. When using the CSG Bone supported, it allows us to make the necessary changes of the hard tissue prior to the implant placement and after the implant placement. The CSG gives us an accurate position for the drilling, and during the implant placement it allows us to alter the vertical position of the implant altering the final position of the abutment and avoiding any risk of any damage to the adjacent anatomical structures. Any Changes required to the bone level can be done prior to the fixation of the CSG using a reduction guide, which incur extra surgical fees and the need of a second surgical guide. Any changes of the bone level after the implant placement are at the risk of damaging the implant neck surface. The technique consists of a universal system that allows us to remove the excess bone around the implant sockets prior to the implant placement which then enables us to place the implant in the vertical position with accuracy as planned with the CSG. The systems consist of a hollow pin of different sizes and diameters. Depending on the implant system that we are using. Length sizes are from 6mm-16mm and a diameter of 2.6mm-4.8mm. Upon the completion of the drilling, the pin is then inserted into the implant socket-using the insertion tool. Once the insertion tool has unscrewed the pin, we can continue with the bone reduction. The bone reduction can be done using conventional methods upon the removal of all the excess bone around the pin. The insertion tool is then screwed into the pin and the pin is then removed. We now, have the new bone level at the crest of the implant socket which is our mark for the vertical position of the implant. In some cases, when we are locating the implant very close to anatomical structures, any form of deviation to the vertical position of the implant during the surgery, can cause damage to such anatomical structures, creating irreversible damages such as paresthesia or dysesthesia of the mandibular nerve. If we are planning for immediate loading and we have done our temporary restauration in base of our computerized plan, deviation in the vertical position of the implant will affect the position of the abutment, affecting the accuracy of the temporary prosthesis, extending the working time till we adapt the prosthesis to the new position.Keywords: bone reduction, computer aided navigation, dental implant placement, surgical guides
Procedia PDF Downloads 3293813 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 1203812 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 783811 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining
Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva
Abstract:
Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining
Procedia PDF Downloads 1663810 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1053809 Post COVID-19 Multi-System Inflammatory Syndrome Masquerading as an Acute Abdomen
Authors: Ali Baker, Russel Krawitz
Abstract:
This paper describes a rare occurrence where a potentially fatal complication of COVID-19 infection (MIS-A) was misdiagnosed as an acute abdomen. As most patients with this syndrome present with fever and gastrointestinal symptoms, they may inadvertently fall under the care of the surgical unit. However, unusual imaging findings and a poor response to anti-microbial therapy should prompt clinicians to suspect a non-surgical etiology. More than half of MIS-A patients require ICU admission and vasopressor support. Prompt referral to a physician is key, as the cornerstone of treatment is IVIG and corticosteroid therapy. A 32 year old woman presented with right sided abdominal pain and fevers. She had also contracted COVID-19 two months earlier. Abdominal examination revealed generalised right sided tenderness. The patient had raised inflammatory markers, but other blood tests were unremarkable. CT scan revealed extensive lymphadenopathy along the ileocolic chain. The patient proved to be a diagnostic dilemma. She was reviewed by several surgical consultants and discussed with several inpatient teams. Although IV antibiotics were commenced, the right sided abdominal pain, and fevers persisted. Pan-culture returned negative. A mild cholestatic derangement developed. On day 5, the patient underwent preparation for colonoscopy to assess for a potential intraluminal etiology. The following day, the patient developed sinus tachycardia and hypotension that was refractory to fluid resuscitation. That patient was transferred to ICU and required vasopressor support. Repeat CT showed peri-portal edema and a thickened gallbladder wall. On re-examination, the patient was Murphy’s sign positive. Biliary ultrasound was equivocal for cholecystitis. The patient was planned for diagnostic laparoscopy. The following morning, a marked rise in cardiac troponin was discovered, and a follow-up echocardiogram revealed moderate to severe global systolic dysfunction. The impression was post-COVID MIS with myocardial involvement. IVIG and Methylprednisolone infusions were commenced. The patient had a great response. Vasopressor support was weaned, and the patient was discharged from ICU. The patient continued to improve clinically with oral prednisolone, and was discharged on day 17. Although MIS following COVID-19 infection is well-described syndrome in children, only recently has it come to light that it can occur in adults. The exact incidence is unknown, but it is thought to be rare. A recent systematic review found only 221 cases of MIS-A, which could be included for analysis. Symptoms vary, but the most frequent include fever, gastrointestinal, and mucocutaneous. Many patients progress to multi-organ failure and require vasopressor support. 7% succumb to the illness. The pathophysiology of MIS is only partly understood. It shares similarities with Kawasaki disease, macrophage activation syndrome, and cytokine release syndrome. Importantly, by definition, the patient must have an absence of severe respiratory symptoms. It is thought to be due to a dysregulated immune response to the virus. Potential mechanisms include reduced levels of neutralising antibodies and autoreactive antibodies that promote inflammation. Further research into MIS-A is needed. Although rare, this potentially fatal syndrome should be considered in the unwell surgical patient who has recently contracted COVID-19 and poses a diagnostic dilemma.Keywords: acute-abdomen, MIS, COVID-19, ICU
Procedia PDF Downloads 1223808 Audio-Lingual Method and the English-Speaking Proficiency of Grade 11 Students
Authors: Marthadale Acibo Semacio
Abstract:
Speaking skill is a crucial part of English language teaching and learning. This actually shows the great importance of this skill in English language classes. Through speaking, ideas and thoughts are shared with other people, and a smooth interaction between people takes place. The study examined the levels of speaking proficiency of the control and experimental groups on pronunciation, grammatical accuracy, and fluency. As a quasi-experimental study, it also determined the presence or absence of significant changes in their speaking proficiency levels in terms of pronouncing the words correctly, the accuracy of grammar and fluency of a language given the two methods to the groups of students in the English language, using the traditional and audio-lingual methods. Descriptive and inferential statistics were employed according to the stated specific problems. The study employed a video presentation with prior information about it. In the video, the teacher acts as model one, giving instructions on what is going to be done, and then the students will perform the activity. The students were paired purposively based on their learning capabilities. Observing proper ethics, their performance was audio recorded to help the researcher assess the learner using the modified speaking rubric. The study revealed that those under the traditional method were more fluent than those in the audio-lingual method. With respect to the way in which each method deals with the feelings of the student, the audio-lingual one fails to provide a principle that would relate to this area and follows the assumption that the intrinsic motivation of the students to learn the target language will spring from their interest in the structure of the language. However, the speaking proficiency levels of the students were remarkably reinforced in reading different words through the aid of aural media with their teachers. The study concluded that using an audio-lingual method of teaching is not a stand-alone method but only an aid of the teacher in helping the students improve their speaking proficiency in the English Language. Hence, audio-lingual approach is encouraged to be used in teaching English language, on top of the chalk-talk or traditional method, to improve the speaking proficiency of students.Keywords: audio-lingual, speaking, grammar, pronunciation, accuracy, fluency, proficiency
Procedia PDF Downloads 663807 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4303806 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1303805 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3623804 Preventing the Septic Shock in an Oncological Patient with Febrile Neutropenia Submitted to Chemotherapy: The Nurse's Responsibility
Authors: Hugo Reis, Isabel Rabiais
Abstract:
The main purpose of the present study is to understand the nurse’s responsibility in preventing the septic shock in an oncological patient with febrile neutropenia submitted to chemotherapy. In order to do it, an integrative review of literature has been conducted. In the research done in many databases, it was concluded that only 7 out of 5202 articles compiled the entire inclusion standard present in the strict protocol of research, being this made up by all different methodologies. On the research done in the 7 articles it has resulted 8 text macro-units associated to different nursing interventions: ‘Health Education’; ‘Prophylactic Therapy Administration’; ‘Scales Utilization’; ‘Patient Evaluation’; ‘Environment Control’; ‘Performance of Diagnostic Auxiliary Exams’; ‘Protocol Enforcement/Procedure Guidelines’; ‘Antibiotic Therapy Administration’. Concerning the prevalence/result’s division there can be identified many conclusions: the macro-units ‘Patient Evaluation’, ‘Performance of Diagnostic Auxiliary Exams’, and ‘Antibiotic Therapy Administration’ present themselves to be the most prevalent in the research – 6 in 7 occurrences (approximately 85.7%). Next, the macro-unit ‘Protocol Enforcement/Procedure Guidelines’ presents itself as an important expression unit – being part of 5 out of the 7 analyzed studies (approximately 71.4%). The macro-unit ‘Health Education’, seems to be in the same way, an important expression unit – 4 out of the 7 (or approximately 57%). The macro-unit ‘Scales Utilization’, represents a minor part in the research done – it’s in only 2 out of the 7 cases (approximately 28.6%). On the other hand, the macro-units ‘Prophylactic Therapy Administration’ and ‘Environment Control’ are the two categories with fewer results in the research - 1 out of the 7 cases, the same as approximately 14.3% of the research results. Every research done to the macro-unit ‘Antibiotic Therapy Administration’ agreed to refer that the intervention should be strictly done, in a period of time less than one hour after diagnosing the fever, with the purpose of controlling the quick spread of infection – minimizing its seriousness. Identifying these interventions contributes, concluding that, to adopt strategies in order to prevent the phenomenon that represents a daily scenario responsible for the cost´s increase in health institutions, being at the same time responsible for the high morbidity rates and mortality increase associated with this specific group of patients.Keywords: febrile neutropenia, oncology nursing, patient, septic shock
Procedia PDF Downloads 2163803 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 1153802 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 1963801 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: carbon nanotubes, static friction, dynamic friction
Procedia PDF Downloads 3133800 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model
Procedia PDF Downloads 1573799 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool
Authors: D. Subedi, S. Pradhan
Abstract:
Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and also on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and also the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.Keywords: accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics
Procedia PDF Downloads 4143798 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance
Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu
Abstract:
Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance
Procedia PDF Downloads 1323797 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction
Procedia PDF Downloads 1583796 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm
Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo
Abstract:
Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation
Procedia PDF Downloads 783795 Semi-Autonomous Surgical Robot for Pedicle Screw Insertion on ex vivo Bovine Bone: Improved Workflow and Real-Time Process Monitoring
Authors: Robnier Reyes, Andrew J. P. Marques, Joel Ramjist, Chris R. Pasarikovski, Victor X. D. Yang
Abstract:
Over the past three decades, surgical robotic systems have demonstrated their ability to improve surgical outcomes. The LBR Med is a collaborative robotic arm that is meant to work with a surgeon to streamline surgical workflow. It has 7 degrees of freedom and thus can be easily oriented. Position and torque sensors at each joint allow it to maintain a position accuracy of 150 µm with real-time force and torque feedback, making it ideal for complex surgical procedures. Spinal fusion procedures involve the placement of as many as 20 pedicle screws, requiring a great deal of accuracy due to proximity to the spinal canal and surrounding vessels. Any deviation from intended path can lead to major surgical complications. Assistive surgical robotic systems are meant to serve as collaborative devices easing the workload of the surgeon, thereby improving pedicle screw placement by mitigating fatigue related inaccuracies. Moreover, robotic spinal systems have shown marked improvements over conventional freehanded techniques in both screw placement accuracy and fusion quality and have greatly reduced the need for screw revision, intraoperatively and post-operatively. However, current assistive spinal fusion robots, such as the ROSA Spine, are limited in functionality to positioning surgical instruments. While they offer a small degree of improvement in pedicle screw placement accuracy, they do not alleviate surgeon fatigue, nor do they provide real-time force and torque feedback during screw insertion. We propose a semi-autonomous surgical robot workflow for spinal fusion where the surgeon guides the robot to its initial position and orientation, and the robot drives the pedicle screw accurately into the vertebra. Here, we demonstrate feasibility by inserting pedicle screws into ex-vivo bovine rib bone. The robot monitors position, force and torque with respect to predefined values selected by the surgeon to ensure the highest possible spinal fusion quality. The workflow alleviates the strain on the surgeon by having the robot perform the screw placement while the ability to monitor the process in real-time keeps the surgeon in the system loop. The approach we have taken in terms of level autonomy for the robot reflects its ability to safely collaborate with the surgeon in the operating room without external navigation systems.Keywords: ex vivo bovine bone, pedicle screw, surgical robot, surgical workflow
Procedia PDF Downloads 1673794 Thermal and Mechanical Finite Element Analysis of a Mineral Casting Machine Frame
Abstract:
Thermal distortion of the machine tool plays a critical role in its machining accuracy. This study investigates the thermal performance of a high-precision machine frame with future-oriented mineral casting components. A thermo-mechanical finite element model (FEM) was established to evaluate the thermal behavior of the frame under environmental thermal fluctuations. The validity of the presented FEM model was confirmed experimentally by a series of laser interferometer tests. Good agreement between numerical and experimental results demonstrates that the proposed model can accurately predict the thermal deformation of the frame with thermo-mechanical coupling effect. The results also show that keeping the workshop in thermally stable conditions is crucial for improving the machine accuracy of the system with large scale components. The goal of this paper is to investigate the feasibility of innovative mineral casting material applied in high-precision drilling machine and to provide a strategy for machine tool industry seeking a perfect substitute for classic frame materials such as cast iron and granite.Keywords: thermo-mechanical model, finite element method, laser interferometer, mineral casting frame
Procedia PDF Downloads 3023793 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry
Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes
Abstract:
The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium
Procedia PDF Downloads 1653792 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm
Authors: Linyu Wang, Furui Huo, Jianhong Xiang
Abstract:
The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.Keywords: OFDM, doubly selective, channel estimation, compressed sensing
Procedia PDF Downloads 943791 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake
Procedia PDF Downloads 1713790 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 2373789 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method
Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir
Abstract:
The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.Keywords: laminar forced convection, lbm, triangular prism
Procedia PDF Downloads 3733788 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1483787 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial
Procedia PDF Downloads 141