Search results for: data making better
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28602

Search results for: data making better

27762 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria

Authors: Abiola A. Sokoya

Abstract:

Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.

Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits

Procedia PDF Downloads 229
27761 A Systematic Review on Challenges in Big Data Environment

Authors: Rimmy Yadav, Anmol Preet Kaur

Abstract:

Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.

Keywords: big data, privacy, data management, network and energy consumption

Procedia PDF Downloads 313
27760 Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria

Authors: Babawale Akin Adeyemi, Esan Temitayo, Adeyemi Olabisi Omowumi

Abstract:

The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data.

Keywords: assessment, geospatial, system, waste disposal

Procedia PDF Downloads 239
27759 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila

Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores

Abstract:

This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.

Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires

Procedia PDF Downloads 10
27758 Unintended Health Inequity: Using the Relationship Between the Social Determinants of Health and Employer-Sponsored Health Insurance as a Catalyst for Organizational Development and Change

Authors: Dinamarie Fonzone

Abstract:

Employer-sponsored health insurance (ESI) strategic decision-making processes rely on financial analysis to guide leadership in choosing plans that will produce optimal organizational spending outcomes. These financial decision-making methods have not abated ESI costs. Previously unrecognized external social determinants, the impact on ESI plan spending, and other organizational strategies are emerging and are important considerations for organizational decision-makers and change management practitioners. The purpose of thisstudy is to examine the relationship between the social determinants of health (SDoH), employer-sponsored health insurance (ESI) plans, andthe unintended consequence of health inequity. A quantitative research design using selectemployee records from an existing employer human capital management database will be analyzed. Statistical regressionmethods will be used to study the relationships between certainSDoH (employee income, neighborhood geographic living area, and health care access) and health plan utilization, cost, and chronic disease prevalence. The discussion will include an application of the social gradient of health theory to the study findings, organizational transformation through changes in ESI decision-making mental models, and the connection of ESI health inequity to organizational development and changediversity, equity, and inclusion strategies.

Keywords: employer-sponsored health insurance, social determinants of health, health inequity, mental models, organizational development, organizational change, social gradient of health theory

Procedia PDF Downloads 110
27757 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria

Authors: Jamila Garba Audu, Shehu Usman Hassan

Abstract:

The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.

Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance

Procedia PDF Downloads 247
27756 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 113
27755 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 522
27754 Contractor Selection by Using Analytical Network Process

Authors: Badr A. Al-Jehani

Abstract:

Nowadays, contractor selection is a critical activity of the project owner. Selecting the right contractor is essential to the project manager for the success of the project, and this cab happens by using the proper selecting method. Traditionally, the contractor is being selected based on his offered bid price. This approach focuses only on the price factor and forgetting other essential factors for the success of the project. In this research paper, the Analytic Network Process (ANP) method is used as a decision tool model to select the most appropriate contractor. This decision-making method can help the clients who work in the construction industry to identify contractors who are capable of delivering satisfactory outcomes. Moreover, this research paper provides a case study of selecting the proper contractor among three contractors by using ANP method. The case study identifies and computes the relative weight of the eight criteria and eleven sub-criteria using a questionnaire.

Keywords: contractor selection, project management, decision-making, bidding

Procedia PDF Downloads 90
27753 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication

Authors: Aishwarya Shekhar, Himanshu Sharma

Abstract:

Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.

Keywords: confidentiality, deduplication, data compression, hybridity of cloud

Procedia PDF Downloads 384
27752 Organisational Disclosure: Threats to Individuals' Privacy

Authors: N. A. Badrul

Abstract:

People are concerned that they are vulnerable as a result of what is exposed about them on the internet. Users are increasingly aware of their privacy and are making various efforts to protect their personal information. However, besides individuals themselves, organisations are also exposing personal information of their staff to the general public by publishing it on their official website. This practice may put individuals at risk and particularly vulnerable to threats. This preliminary study explores explicitly the amount and types of personal information disclosure from organisational websites. Threats and risks related to the disclosures are discussed. In general, all the examined organisational websites discloses personal information with varies identifiable degree of data.

Keywords: personal information, privacy, e-government, information disclosure

Procedia PDF Downloads 319
27751 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 446
27750 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set

Authors: Seema Vaidya

Abstract:

Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.

Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth

Procedia PDF Downloads 400
27749 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights

Authors: Tomy Prihananto, Damar Apri Sudarmadi

Abstract:

Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.

Keywords: Indonesia, protection, personal data, privacy, human rights, encryption

Procedia PDF Downloads 183
27748 Climate Change: A Critical Analysis on the Relationship between Science and Policy

Authors: Paraskevi Liosatou

Abstract:

Climate change is considered to be of global concern being amplified by the fact that by its nature, cannot be spatially limited. This fact makes necessary the intergovernmental decision-making procedures. In the intergovernmental level, the institutions such as the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change develop efforts, methods, and practices in order to plan and suggest climate mitigation and adaptation measures. These measures are based on specific scientific findings and methods making clear the strong connection between science and policy. In particular, these scientific recommendations offer a series of practices, methods, and choices mitigating the problem by aiming at the indirect mitigation of the causes and the factors amplifying climate change. Moreover, modern production and economic context do not take into consideration the social, political, environmental and spatial dimensions of the problem. This work studies the decision-making process working in international and European level. In this context, this work considers the policy tools that have been implemented by various intergovernmental organizations. The methodology followed is based mainly on the critical study of standards and process concerning the connections and cooperation between science and policy as well as considering the skeptic debates developed. The finding of this work focuses on the links between science and policy developed by the institutional and scientific mechanisms concerning climate change mitigation. It also analyses the dimensions and the factors of the science-policy framework; in this way, it points out the causes that maintain skepticism in current scientific circles.

Keywords: climate change, climate change mitigation, climate change skepticism, IPCC, skepticism

Procedia PDF Downloads 136
27747 Neuropsychological Testing in a Multi-Lingual Society: Normative Data for South African Adults in More Than Eight Languages

Authors: Sharon Truter, Ann B. Shuttleworth-Edwards

Abstract:

South Africa is a developing country with significant diversity in languages spoken and quality of education available, creating challenges for fair and accurate neuropsychological assessments when most available neuropsychological tests are obtained from English-speaking developed countries. The aim of this research was to compare normative data on a spectrum of commonly used neuropsychological tests for English- and Afrikaans-speaking South Africans with relatively high quality of education and South Africans with relatively low quality of education who speak Afrikaans, Sesotho, Setswana, Sepedi, Tsonga, Venda, Xhosa or Zulu. The participants were all healthy adults aged 18-60 years, with 8-12 years of education. All the participants were tested in their first language on the following tests: two non-verbal tests (Rey Osterrieth Complex Figure Test and Bell Cancellation Test), four verbal fluency tests (category, phonemic, verb and 'any words'), one verbal learning test (Rey Auditory Verbal Leaning Test) and three tests that have a verbal component (Trail Making Test A & B; Symbol Digit Modalities Test and Digit Span). Descriptive comparisons of mean scores and standard deviations across the language groups and between the groups with relatively high versus low quality of education highlight the importance of using normative data that takes into account language and quality of education.

Keywords: cross-cultural, language, multi-lingual, neuropsychological testing, quality of education

Procedia PDF Downloads 177
27746 The Various Legal Dimensions of Genomic Data

Authors: Amy Gooden

Abstract:

When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.

Keywords: artificial intelligence, data, law, genomics, rights

Procedia PDF Downloads 140
27745 Confirming the Factors of Professional Readiness in Athletic Training

Authors: Philip A. Szlosek, M. Susan Guyer, Mary G. Barnum, Elizabeth M. Mullin

Abstract:

In the United States, athletic training is a healthcare profession that encompasses the prevention, examination, diagnosis, treatment, and rehabilitation of injuries and medical conditions. Athletic trainers work under the direction of or in collaboration with a physician and are recognized by the American Medical Association as allied healthcare professionals. Internationally, this profession is often known as athletic therapy. As healthcare professionals, athletic trainers must be prepared for autonomous practice immediately after graduation. However, new athletic trainers have been shown to have clinical areas of strength and weakness.To better assess professional readiness and improve the preparedness of new athletic trainers, the factors of athletic training professional readiness must be defined. Limited research exists defining the holistic aspects of professional readiness needed for athletic trainers. Confirming the factors of professional readiness in athletic training could enhance the professional preparation of athletic trainers and result in more highly prepared new professionals. The objective of this study was to further explore and confirm the factors of professional readiness in athletic training. Authors useda qualitative design based in grounded theory. Participants included athletic trainers with greater than 24 months of experience from a variety of work settings from each district of the National Athletic Trainer’s Association. Participants took the demographic questionnaire electronically using Qualtrics Survey Software (Provo UT). After completing the demographic questionnaire, 20 participants were selected to complete one-on-one interviews using GoToMeeting audiovisual web conferencing software. IBM Statistical Package for the Social Sciences (SPSS, v. 21.0) was used to calculate descriptive statistics for participant demographics. The first author transcribed all interviews verbatim and utilized a grounded theory approach during qualitative data analysis. Data were analyzed using a constant comparative analysis and open and axial coding. Trustworthiness was established using reflexivity, member checks, and peer reviews. Analysis revealed four overarching themes, including management, interpersonal relations, clinical decision-making, and confidence. Management was categorized as athletic training services not involving direct patient care and was divided into three subthemes, including administration skills, advocacy, and time management. Interpersonal Relations was categorized as the need and ability of the athletic trainer to properly interact with others. Interpersonal relations was divided into three subthemes, including personality traits, communication, and collaborative practice. Clinical decision-making was categorized as the skills and attributes required by the athletic trainer whenmaking clinical decisions related to patient care. Clinical decision-making was divided into three subthemes including clinical skills, continuing education, and reflective practice. The final theme was confidence. Participants discussed the importance of confidence regarding relationships building, clinical and administrative duties, and clinical decision-making. Overall, participants explained the value of a well-rounded athletic trainer and emphasized that athletic trainers need communication and organizational skills, the ability to collaborate, and must value self-reflection and continuing education in addition to having clinical expertise. Future research should finalize a comprehensive model of professional readiness for athletic training, develop a holistic assessment instrument for athletic training professional readiness, and explore the preparedness of new athletic trainers.

Keywords: autonomous practice, newly certified athletic trainer, preparedness for professional practice, transition to practice skills

Procedia PDF Downloads 151
27744 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)

Procedia PDF Downloads 236
27743 Place-Making Theory behind Claremont Court

Authors: Sandra Costa-Santos, Nadia Bertolino, Stephen Hicks, Vanessa May, Camilla Lewis

Abstract:

This paper aims to elaborate the architectural theory on place-making that supported Claremont Court housing scheme (Edinburgh, United Kingdom). Claremont Court (1959-62) is a large post-war mixed development housing scheme designed by Basil Spence, which included ‘place-making’ as one of its founding principles. Although some stylistic readings of the housing scheme have been published, the theory on place-making that allegedly ruled the design has yet to be clarified. The architecture allows us to mark or make a place within space in order to dwell. Under the framework of contemporary philosophical theories of place, this paper aims to explore the relationship between place and dwelling through a cross-disciplinary reading of Claremont Court, with a view to develop an architectural theory on place-making. Since dwelling represents the way we are immersed in our world in an existential manner, this theme is not just relevant for architecture but also for philosophy and sociology. The research in this work is interpretive-historic in nature. It examines documentary evidence of the original architectural design, together with relevant literature in sociology, history, and architecture, through the lens of theories of place. First, the paper explores how the dwelling types originally included in Claremont Court supported ideas of dwelling or meanings of home. Then, it traces shared space and social ties in order to study the symbolic boundaries that allow the creation of a collective identity or sense of belonging. Finally, the relation between the housing scheme and the supporting theory is identified. The findings of this research reveal Scottish architect Basil Spence’s exploration of the meaning of home, as he changed his approach to the mass housing while acting as President of the Royal Incorporation of British Architects (1958-60). When the British Government was engaged in various ambitious building programmes, he sought to drive architecture to a wider socio-political debate as president of the RIBA, hence moving towards a more ambitious and innovative socio-architectural approach. Rather than trying to address the ‘genius loci’ with an architectural proposition, as has been stated, the research shows that the place-making theory behind the housing scheme was supported by notions of community-based on shared space and dispositions. The design of the housing scheme was steered by a desire to foster social relations and collective identities, rather than by the idea of keeping the spirit of the place. This research is part of a cross-disciplinary project funded by the Arts and Humanities Research Council. The findings present Claremont Court as a signifier of Basil Spence’s attempt to address the post-war political debate on housing in United Kingdom. They highlight the architect’s theoretical agenda and challenge current purely stylistic readings of Claremont Court as they fail to acknowledge its social relevance.

Keywords: architectural theory, dwelling, place-making, post-war housing

Procedia PDF Downloads 266
27742 Intertwined Lives: Narratives of Children with Disabilities and Their Siblings

Authors: Shyamani Hettiarachchi

Abstract:

The experiences of children with disabilities and their siblings are seldom documented in Sri Lanka. The aim of this study was to uncover the narratives of young children with disabilities and their siblings in Sri Lanka. Fifteen children with disabilities and fifteen siblings were included in this study. Opportunities were offered to the participants to engage in artwork and story making activities. Narratives on the artwork and stories were gathered and the data analyzed using the key principles of Framework Analysis to determine the key themes. The key themes to emerge were of love, protectiveness, insecurity and visibility. The results highlight the need to take account of the experiences of children with disabilities and their siblings to understand how they understand and cope with disability.

Keywords: art, children with disabilities, narratives, siblings, storymaking

Procedia PDF Downloads 277
27741 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 44
27740 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 147
27739 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 24
27738 A Review Paper on Data Mining and Genetic Algorithm

Authors: Sikander Singh Cheema, Jasmeen Kaur

Abstract:

In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.

Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining

Procedia PDF Downloads 593
27737 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring

Authors: Seung-Lock Seo

Abstract:

This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.

Keywords: data mining, process data, monitoring, safety, industrial processes

Procedia PDF Downloads 401
27736 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)

Authors: Andre Sanches Siqueira Campos

Abstract:

Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.

Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC

Procedia PDF Downloads 114
27735 Dividends Smoothing in an Era of Unclaimed Dividends: A Panel Data Analysis in Nigeria

Authors: Apedzan Emmanuel Kighir

Abstract:

This research investigates dividends smoothing among non-financial companies trading on the Nigerian Stock Exchange in an era of unclaimed dividends from 2004 to 2013. There has been a raging controversy among Regulatory Authorities, Company Executives, Registrars of Companies, Shareholders and the general public regarding the increasing incidence of unclaimed dividends in Nigeria. The objective of this study is to find out if corporate earnings management through dividends smoothing is implicated in unclaimed dividends among Nigerian non-financial firms. The research used panel data and employed Generalized Method of Moment as method of analysis. The research finds evidence of dividends-smoothing in this era of unclaimed dividends in Nigeria. The research concludes that dividends-smoothing is a trigger and red flag for unclaimed dividends, an output of earnings management. If earnings management and hence unclaimed dividends in Nigeria is allowed to continue, it will lead to great consequences to the investors and corporate policy of government. It is believed that the research will assist investors and government in making informed decisions regarding dividends policy in Nigeria.

Keywords: dividends smoothing, non financial companies, Nigerian stock exchange, unclaimed dividends, corporate earnings management

Procedia PDF Downloads 282
27734 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 189
27733 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management

Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan

Abstract:

During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.

Keywords: aircraft maintenance, downtime, downtime cost, maintenance cost

Procedia PDF Downloads 354