Search results for: computer numerical control (CNC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15694

Search results for: computer numerical control (CNC)

14854 Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System

Authors: Yoonsoo Kim

Abstract:

This paper introduces an open-source software package SCILAB, an alternative of MATLAB, which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design.

Keywords: robust control, SCILAB, mass-spring-damper (MSD), popular mechanical systems

Procedia PDF Downloads 468
14853 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 522
14852 Examples of RC Design with Eurocode2

Authors: Carla Ferreira, Helena Barros

Abstract:

The paper termed “Design of reinforced concrete with Eurocode 2” presents the theory regarding the design of reinforced concrete sections and the development of the tables and abacuses to verify the concrete section to the ultimate limit and service limit states. This paper is a complement of it, showing how to use the previous tools. Different numerical results are shown, proving the capability of the methodology. When a section of a beam is already chosen, the computer program presents the reinforcing steel in many locations along the structure, and it is the engineer´s task to choose the layout available for the construction, considering the maximum regular kind of reinforcing bars. There are many computer programs available for this task, but the interest of the present kind of tools is the fast and easy way of making the design and choose the optimal solution. Another application of these design tools is in the definition of the section dimensions, in a way that when stresses are evaluated, the final design is acceptable. In the design offices, these are considered by the engineers a very quick and useful way of designing reinforced concrete sections, employing variable strength concrete and higher steel classes. Examples of nonlinear analyses and redistribution of the bending moment will be considered, according to the Eurocode 2 recommendations, for sections under bending moment and axial forces. Examples of the evaluation of the service limit state will be presented.

Keywords: design examples, eurocode 2, reinforced concrete, section design

Procedia PDF Downloads 67
14851 The Attitude of High School Teachers in Saudi Arabia towards Computers: Qualitative Study

Authors: Manal O. Alothman, Judy Robertson

Abstract:

Teachers can play a huge role in encouraging students to use computers and can affect students’ attitudes towards computers. So understanding teachers’ beliefs and their use of computers is an important way to create effective motivational systems for teachers to use computers in the classroom in an effective way.A qualitative study (6 focus group) was carried out among Saudi High school teachers, both male and female, to examine their attitudes towards computers and to find out their computer skills and usage. The study showed a gender difference in that females were less likely to attend computer workshops, females also had less computer skills, and they have more negative attitudes towards computers than males. Also, the study found that low computer skills in the classroom made students unlikely to have the lessons presented using computers. Furthermore, the study found some factors that affected teachers’ attitudes towards computers. These factors were computer experience and confidence as much having skills and good experience in computer use, the role and importance of computers had become in their life and in teaching as well.

Keywords: attitude, education, student, teacher, technology

Procedia PDF Downloads 288
14850 The Investigation of Counselors Attitudes toward Online Counseling upon Taking Clients Perspective

Authors: Omer Ozer, Murat Yikilmaz, Ahmet Altinok, Ferhat Bayolu

Abstract:

There is an increasing number of online counseling services, studies exploring clients’ and counselors’ attitudes toward online counseling services are needed to provide effective and efficient mental health counseling services. The purpose of this study is to investigate counselors’ attitudes toward online counseling in relation to counselors’ genders, their daily usage of computer, their total usage of computer, and their self-efficacy in computer usage. In this study, Personal Information Form, specific items from the Online Counseling Attitudes Scale, and the Face-to-Face Counseling Attitudes Scale were given to 193 counselors to measure attitudes toward online counseling. Data were analyzed by using independent samples t-test and one-way ANOVA. There were no statistically significant differences counselors’ attitudes toward online counseling and counselors’ gender, their daily usage of computer, their total usage of computer, and their self-efficacy in computer usage. The implications of these findings have been discussed in the literature review to provide some suggestions to researchers in the counseling profession.

Keywords: online counseling, counselor, attitude, counseling service

Procedia PDF Downloads 352
14849 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 220
14848 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 313
14847 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 343
14846 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 370
14845 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: incremental forming, numerical simulation, MPIF, multipoint forming

Procedia PDF Downloads 352
14844 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System

Authors: Djamila Nebbali, Rezki Nebbali, Ahmed Ouibrahim

Abstract:

This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000 W.m2) in a case of no wind.

Keywords: energy conversion, efficiency, balance energy, solar cell

Procedia PDF Downloads 413
14843 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: blast phenomenon, experimental methods, material models, numerical methods

Procedia PDF Downloads 153
14842 Research on Measuring Operational Risk in Commercial Banks Based on Internal Control

Authors: Baobao Li

Abstract:

Operational risk covers all operations of commercial banks and has a close relationship with the bank’s internal control. But in the commercial banks' management practice, internal control is always separated from the operational risk measurement. With the increasing of operational risk events in recent years, operational risk is paid more and more attention by regulators and banks’ managements. The paper first discussed the relationship between internal control and operational risk management and used CVaR-POT model to measure operational risk, and then put forward a modified measurement method (to use operational risk assessment results to modify the measurement results of the CVaR-POT model). The paper also analyzed the necessity and rationality of this method. The method takes into consideration the influence of internal control, improves the accuracy and effectiveness of operational risk measurement and save the economic capital for commercial banks, avoiding the drawbacks of using some mainstream models one-sidedly.

Keywords: commercial banks, internal control, operational risk, risk measurement

Procedia PDF Downloads 394
14841 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 254
14840 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 196
14839 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 438
14838 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter

Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn

Abstract:

The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.

Keywords: fuzzy logic system, optimization, membership function, extended FIR filter

Procedia PDF Downloads 718
14837 Sliding Mode Control of the Power of Doubly Fed Induction Generator for Variable Speed Wind Energy Conversion System

Authors: Ahmed Abbou, Ali Mousmi, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: correction of the equivalent command, DFIG, induction machine, sliding mode controller

Procedia PDF Downloads 412
14836 Complex Cooling Approach in Microchannel Heat Exchangers Using Solid and Hollow Fins

Authors: Nahum Yustus Godi

Abstract:

A three-dimensional numerical optimisation of combined microchannels with constructal solid, half hollow, and hollow circular fins is documented in this paper. The technique seeks to minimize peak temperature in the entire volume of the microchannel heat sink. The volume and axial length were all fixed, while the width of the microchannel could morph. High-density heat flux was applied at the bottom wall of the microchannel. The coolant employed to remove the heat deposited at the bottom surface of the microchannel was a single-phase fluid (water) in a forced convection laminar condition, and heat transfer was a conjugate problem. The unit cell symmetrical computation domain was discretised, and governing equations were solved using computational fluid dynamic (CFD) code. The results reveal that the combined microchannel with hollow circular fins and solid fins performed better at different Reynolds numbers. The numerical study was validated for the single microchannel without fins and found to be in good agreement with previous studies.

Keywords: constructal fins, complex heat exchangers, cooling technique, numerical optimisation

Procedia PDF Downloads 219
14835 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 510
14834 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine

Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy

Abstract:

This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.

Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances

Procedia PDF Downloads 616
14833 Voice and Head Controlled Intelligent Wheelchair

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control

Procedia PDF Downloads 534
14832 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory.

Keywords: mobile manipulator, sliding mode control, dynamic interaction, mobile robotics

Procedia PDF Downloads 186
14831 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material

Procedia PDF Downloads 96
14830 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada

Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya

Abstract:

Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.

Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability

Procedia PDF Downloads 99
14829 High Viscous Oil–Water Flow: Experiments and CFD Simulations

Authors: A. Archibong-Eso, J. Shi, Y Baba, S. Alagbe, W. Yan, H. Yeung

Abstract:

This study presents over 100 experiments conducted in a 25.4 mm internal diameter (ID) horizontal pipeline. Oil viscosity ranging from 3.5 Pa.s–5.0 Pa.s are used with superficial velocities of oil and water ranging from 0.06 to 0.55 m/s and 0.01 m/s to 1.0 m/s, respectively. Pressure gradient measurements and flow pattern observations are discussed. Numerical simulation of some flow conditions is performed using the commercial CFD code ANSYS Fluent® and the simulation results are compared with experimental results. Results indicate that CFD numerical simulation performed moderately well in predicting the flow configurations observed in this study while discrepancies were observed in the pressure gradient predictions.

Keywords: flow patterns, plug, pressure gradient, rivulet

Procedia PDF Downloads 422
14828 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

A heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed a PID controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software, and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia PDF Downloads 217
14827 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 366
14826 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade

Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour

Abstract:

The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.

Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation

Procedia PDF Downloads 355
14825 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation

Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati

Abstract:

Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.

Keywords: grid structure, pump intake, simulation, vibration, vortex

Procedia PDF Downloads 173