Search results for: thermal network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8139

Search results for: thermal network

7329 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 373
7328 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 283
7327 Implementation of Traffic Engineering Using MPLS Technology

Authors: Vishal H. Shukla, Sanjay B. Deshmukh

Abstract:

Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator.

Keywords: GNS3, JPERF, MPLS, traffic engineering, VMware

Procedia PDF Downloads 487
7326 Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties

Authors: Nuray Yılmaz Baran

Abstract:

The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques.

Keywords: polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability

Procedia PDF Downloads 232
7325 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
7324 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 346
7323 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 218
7322 Thermal and Dielectric Breakdown Criterium for Low Voltage Switching Devices

Authors: Thomas Merciris, Mathieu Masquere, Yann Cressault, Pascale Petit

Abstract:

The goal of an alternative current (AC) switching device is to allow the arc (created during the opening phase of the contacts) to extinguish at the current zero. The plasma temperature rate of cooling down, the electrical characteristic of the arc (current-voltage), and the rise rate of the transient recovery voltage (TRV) are critical parameters which influence the performance of a switching device. To simulate the thermal extinction of the arc and to obtain qualitative data on the processes responsible for this phenomenon, a 1D MHD fluid model in the air was developed and coupled to an external electric circuit. After thermal extinction, the dielectric strength of the hot air (< 4kK) was then estimated by the Bolsig+ software and the critical electric fields method with the temperature obtained by the MHD simulation. The influence of copper Cu and silver Ag vapors was investigated on the thermal and dielectric part of the simulation with various current forms (100A to 1kA). Finally, those values of dielectric strength have been compared to the experimental values obtained in the case of two separating silver contacts. The preliminary results seem to indicate the dielectric strength after multiples hundreds of microseconds is the same order of magnitude as experimentally found.

Keywords: MHD simulation, dielectric recovery, Bolsig+, silver vapors, copper vapors, breakers, electric arc

Procedia PDF Downloads 116
7321 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe

Authors: Zeta Dooly, Aidan Duane

Abstract:

The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.

Keywords: research networks, competency building, network theory, case study

Procedia PDF Downloads 126
7320 The Acceptance of Online Social Network Technology for Tourism Destination

Authors: Wanida Suwunniponth

Abstract:

The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.

Keywords: Facebook, online social network, technology acceptance model, tourism destination

Procedia PDF Downloads 343
7319 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling

Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla

Abstract:

Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.

Keywords: electronic waste, kinetic study, recycling, thermal transformation

Procedia PDF Downloads 145
7318 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model

Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim

Abstract:

Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature and the right vertical wall is maintained at a constant cold temperature, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL's finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number, the modified thermal conductivity ratio, the inter-phase heat transfer coefficien and the time independent. The results presented for values of the governing parameters in terms of streamlines in both fluid/porous layer, isotherms of fluid and solid porous layer, isotherms of fluid layer, and average Nusselt number.

Keywords: unsteady natural convection, thermal non-equilibrium model, Darcy model

Procedia PDF Downloads 376
7317 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
7316 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses

Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer

Abstract:

The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.

Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation

Procedia PDF Downloads 171
7315 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 184
7314 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663
7313 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 366
7312 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 130
7311 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 95
7310 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 40
7309 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
7308 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories

Procedia PDF Downloads 283
7307 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Petroula A. Tarantili

Abstract:

In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene

Procedia PDF Downloads 321
7306 How to Modernise the ECN

Authors: Dorota Galeza

Abstract:

This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.

Keywords: ECN, networks, regulation, competition

Procedia PDF Downloads 428
7305 Numerical Study on the Heat Transfer Characteristics of Composite Phase Change Materials

Authors: Gui Yewei, Du Yanxia, Xiao Guangming, Liu Lei, Wei Dong, Yang Xiaofeng

Abstract:

A phase change material (PCM) is a substance which absorbs a large amount of energy when undergoing a change of solid-liquid phase. The good physical and chemical properties of C or SiC foam reveal the possibility of using them as a thermal conductivity enhancer for the PCM. C or SiC foam composite PCM has a high effective conductivity and becomes one of the most interesting thermal storage techniques due to its advantage of simplicity and reliability. The paper developed a numerical method to simulate the heat transfer of SiC and C foam composite PCM, a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the equivalent specific heat method. The effects of the porosity were investigated based on the numerical method, and the effects of the geometric model of the microstructure on the equivalent thermal conductivity was studies.

Keywords: SiC foam, composite, phase change material, heat transfer

Procedia PDF Downloads 510
7304 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.

Keywords: ISA, neural network, Brain Float-16, DUT

Procedia PDF Downloads 94
7303 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia

Authors: Edward P. Guillen, A. Karina Martinez Barliza

Abstract:

Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.

Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution

Procedia PDF Downloads 266
7302 Mobile Network Users Amidst Ultra-Dense Networks in 5G Using an Improved Coordinated Multipoint (CoMP) Technology

Authors: Johnson O. Adeogo, Ayodele S. Oluwole, O. Akinsanmi, Olawale J. Olaluyi

Abstract:

In this 5G network, very high traffic density in densely populated areas, most especially in densely populated areas, is one of the key requirements. Radiation reduction becomes one of the major concerns to secure the future life of mobile network users in ultra-dense network areas using an improved coordinated multipoint technology. Coordinated Multi-Point (CoMP) is based on transmission and/or reception at multiple separated points with improved coordination among them to actively manage the interference for the users. Small cells have two major objectives: one, they provide good coverage and/or performance. Network users can maintain a good quality signal network by directly connecting to the cell. Two is using CoMP, which involves the use of multiple base stations (MBS) to cooperate by transmitting and/or receiving at the same time in order to reduce the possibility of electromagnetic radiation increase. Therefore, the influence of the screen guard with rubber condom on the mobile transceivers as one major piece of equipment radiating electromagnetic radiation was investigated by mobile network users amidst ultra-dense networks in 5g. The results were compared with the same mobile transceivers without screen guards and rubber condoms under the same network conditions. The 5 cm distance from the mobile transceivers was measured with the help of a ruler, and the intensity of Radio Frequency (RF) radiation was measured using an RF meter. The results show that the intensity of radiation from various mobile transceivers without screen guides and condoms was higher than the mobile transceivers with screen guides and condoms when call conversation was on at both ends.

Keywords: ultra-dense networks, mobile network users, 5g, coordinated multi-point.

Procedia PDF Downloads 103
7301 The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine

Authors: A.Velavan, C. G. Saravanan, M. Vikneswaran, E. James Gunasekaran

Abstract:

In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston.

Keywords: coated piston, micro-arc oxidation, thermal barrier, thermal efficiency, visioscope

Procedia PDF Downloads 147
7300 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions

Authors: Prashant S. Humnabad

Abstract:

The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.

Keywords: FEA, thermal analysis, preheating, friction stir welding

Procedia PDF Downloads 189