Search results for: link data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26023

Search results for: link data

25213 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 518
25212 Transfer of Electrical Energy by Magnetic Induction

Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa

Abstract:

Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.

Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor

Procedia PDF Downloads 518
25211 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
25210 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: data grids, fault tolerance, clustering, chandy-lamport

Procedia PDF Downloads 342
25209 Grammatical Interference in Russian-Spanish Bilingualism

Authors: Olga A. Gnatyuk

Abstract:

The article is devoted to the phenomenon of interference that occurs in the case of the Russian-Spanish language contact. The questions of the definition of the term and levels, as well as prerequisites of interference occurrence, are considered. Interference, which is an essential part of bilingualism, may become apparent at different linguistic levels. Interference is especially evident in oral speech. The article reviews some examples of grammatical interference in Russian-Spanish bilingualism of Russian immigrants living in Spain. According to the results of the research, some cases of mother-tongue interference in Russian-Speaking Spanish language learners’ speech were revealed. Special attention is paid to such key spheres of grammatical interference as articles, personal pronouns, gender, and number of nouns. In the research, the drop of a link-verb, as well as its usage in some incorrect form, are observed in Russian immigrants’ speech. Conclusions are drawn that in the Spanish language, interference errors appear because of a consequence of both the absence in the Russian language of certain phenomena and categories of the Spanish language and the discrepancy of the linguistic systems of the two languages.

Keywords: bilingualism, interference, grammatical interference, Russian language, Spanish language

Procedia PDF Downloads 160
25208 Attracting the North Holidaymaker to Ireland Using Social Media Channels: An Irish Marketing Strategy

Authors: Colm Barcoe, Garvan Whelan

Abstract:

In tourism, engagement has been found to boost awareness of a destination and subsequently increase visits. Customer engagement in this industry is now facilitated by social media. This phenomenon is not very well researched in relation to Ireland and the North American tourism market. The objective of this paper is to present research findings on two related topics; the first is an investigation into the effectiveness of social media channels as components of a digital marketing campaign when promoting Ireland as a brand in North America. Secondly, this study reveals how Irish marketers have embraced social media platforms and channels with an innovative strategy that has successfully attracted growing numbers of US and Canadian holidaymakers to Ireland. A range of methodological approaches was applied in order to achieve the study’s objective. The methods used were both quantitative and qualitative, and the data was obtained from both Irish marketers and North American holidaymakers. Surveys of these holidaymakers in the pre, during and post-trip phases revealed their attitudes towards social media and Ireland as a destination. Semi-structured interviews with those responsible for implementing relationship marketing strategies for this segment provide insight into the effectiveness of social media when used to capitalise on the cultural link between Ireland and North America. Further analysis involved using Nvivo 11+ software to investigate the activities of the Irish destination marketer (DMO) and the engagement of the US and Canadian audiences through a detailed study of social media platform content. The findings from this investigation will extend an under-researched body of literature pertaining to Ireland as a destination and the successful digital marketing campaigns that have achieved exponential growth in this sector over the past five years. The empirical evidence presented also illustrates how the innovative use of social media has assisted the DMO to engage with the North American holidaymaker as part of an effective digital marketing strategy.

Keywords: channels, digital, engagement, marketing, strategies

Procedia PDF Downloads 158
25207 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.

Keywords: information technology, data mining, scientific development, clustering

Procedia PDF Downloads 278
25206 Security in Resource Constraints: Network Energy Efficient Encryption

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.

Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC

Procedia PDF Downloads 145
25205 Data Mining Techniques for Anti-Money Laundering

Authors: M. Sai Veerendra

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.

Keywords: data mining, clustering, money laundering, anti-money laundering solutions

Procedia PDF Downloads 539
25204 Empowered Women Entrepreneurs and Sustainable Rural Tourism: A Study into the Voices and Experiences of Local Women in the Sundarbans Area of Bangladesh

Authors: Jakia Rajoana

Abstract:

The aim of this paper is to examine the role of women entrepreneurs in bringing about sustainable rural tourism (SRT) development in Sundarbans area of Bangladesh. Theoretically, it draws upon empowerment and entrepreneurial marketing concepts. Women entrepreneurship development and lack of empowered women as role models is an important issue for developing economies in South Asia. Despite the substantial role women play in rural economy of Sundarbans, their contribution remains overlooked as enterprises led by them are run on an informal basis and their business acumen is not taken seriously both by their families and society at large. Studies on SRT fail to engage in sufficient depth with the term applied in this paper as ‘invisible women on the margins’ who run their enterprises with no formal training or societal/familial support. Moreover, the link between their (non) tourism enterprise and their empowerment remains under-theorized. Thus empirically, this research seeks to fill a significant gap by focusing on a considerably under-researched Sundarbans region. Methodologically, this study follows a qualitative research design using visual ethnographic approach. Participant observation, semi-structured interviews, and documentation are the primary data collection instruments in three coastal communities – Munshigonj, Burigoalini and Gabura – in the Sundarbans area. By focusing on the narratives of these under-investigated women, this work aims to provide in-depth and nuanced insights into salient issues on marginal communities experience from rural women’s perspectives. Initial findings illustrate that the Sundarbans women have low income due to no or little education. In addition, socio-cultural and religious factors also restrict the scope of their extensive contribution to workplace. In addition, physical and social violence which is a common occurrence for these women inhibits their agency and contributes to their disempowerment.

Keywords: gender, empowerment, entrepreneurial marketing, sustainable rural tourism, Sundarbans

Procedia PDF Downloads 288
25203 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 521
25202 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data

Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee

Abstract:

Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.

Keywords: data mining, evaluating new technology, technology opportunity, patent analysis

Procedia PDF Downloads 378
25201 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 96
25200 Wrist Pain, Technological Device Used, and Perceived Academic Performance Among the College of Computer Studies Students

Authors: Maquiling Jhuvie Jane R., Ojastro Regine B., Peroja Loreille Marie B., Pinili Joy Angela., Salve Genial Gail M., Villavicencio Marielle Irene B., Yap Alther Francis Garth B.

Abstract:

Introduction: This study investigated the impact of prolonged device usage on wrist pain and perceived academic performance among college students in Computer Studies. The research aims to explore the correlation between the frequency of technological device use and the incidence of wrist pain, as well as how this pain affects students' academic performance. The study seeks to provide insights that could inform interventions to promote better musculoskeletal health among students engaged in intensive technology use to further improve their academic performance. Method: The study utilized descriptive-correlational and comparative design, focusing on bona fide students from Silliman University’s College of Computer Studies during the second semester of 2023-2024. Participants were recruited through a survey sent via school email, with responses collected until March 30, 2024. Data was gathered using a password-protected device and Google Forms, ensuring restricted access to raw data. The demographic profile was summarized, and the prevalence of wrist pain and device usage were analyzed using percentages and weighted means. Statistical analyses included Spearman’s rank correlation coefficient to assess the relationship between wrist pain and device usage and an Independent T-test to evaluate differences in academic performance based on wrist pain presence. Alpha was set at 0.05. Results: The study revealed that 40% of College of Computer Studies students experience wrist pain, with 2 out of every 5 students affected. Laptops and desktops were the most frequently used devices for academic work, achieving a weighted mean of 4.511, while mobile phones and tablets received lower means of 4.183 and 1.911, respectively. The average academic performance score among students was 29.7, classified as ‘Good Performance.’ Notably, there was no significant relationship between the frequency of device usage and wrist pain, as indicated by p-values exceeding 0.05. However, a significant difference in perceived academic performance was observed, with students without wrist pain scoring an average of 30.39 compared to 28.72 for those with wrist pain and a p-value of 0.0134 confirming this distinction. Conclusion: The study revealed that about 40% of students in the College of Computer Studies experience wrist pain, but there is no significant link between device usage and pain occurrence. However, students without wrist pain demonstrated better academic performance than those with pain, suggesting that wrist health may impact academic success. These findings imply that physical therapy practices in the Philippines should focus on preventive strategies and ergonomic education to improve student health and performance.

Keywords: wrist pain, frequency of use of technological devices, perceived academic performance, physical therapy

Procedia PDF Downloads 16
25199 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
25198 The Impact of Financial Reporting on Sustainability

Authors: Lynn Ruggieri

Abstract:

The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.

Keywords: financial reporting, non-financial data, sustainability, global financial reporting

Procedia PDF Downloads 180
25197 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 96
25196 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation

Authors: Sahil Imtiyaz

Abstract:

One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.

Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations

Procedia PDF Downloads 195
25195 An Exploration of Policy-related Documents on District Heating and Cooling in Flanders: A Slow and Bottom-up Process

Authors: Isaura Bonneux

Abstract:

District heating and cooling (DHC) is increasingly recognized as a viable path towards sustainable heating and cooling. While some countries like Sweden and Denmark have a longstanding tradition of DHC, Belgium is lacking behind. The Northern part of Belgium, Flanders, had only a total of 95 heating networks in July 2023. Nevertheless, it is increasingly exploring its possibilities to enhance the scope of DHC. DHC is a complex energy system, requiring a lot of collaboration between various stakeholders on various levels. Therefore, it is of interest to look closer at policy-related documents at the Flemish (regional) level, as these policies set the scene for DHC development in the Flemish region. This kind of analysis has not been undertaken so far. This paper has the following research question: “Who talks about DHC, and in which way and context is DHC discussed in Flemish policy-related documents?” To answer this question, the Overton policy database was used to search and retrieve relevant policy-related documents. Overton retrieves data from governments, think thanks, NGOs, and IGOs. In total, out of the 244 original results, 117 documents between 2009 and 2023 were analyzed. Every selected document included theme keywords, policymaking department(s), date, and document type. These elements were used for quantitative data description and visualization. Further, qualitative content analysis revealed patterns and main themes regarding DHC in Flanders. Four main conclusions can be drawn: First, it is obvious from the timeframe that DHC is a new topic in Flanders with still limited attention; 2014, 2016 and 2017 were the years with the most documents, yet this number is still only 12 documents. In addition, many documents talked about DHC but not much in depth and painted it as a future scenario with a lot of uncertainty around it. The largest part of the issuing government departments had a link to either energy or climate (e.g. Flemish Environmental Agency) or policy (e.g. Socio-Economic Council of Flanders) Second, DHC is mentioned most within an ‘Environment and Sustainability’ context, followed by ‘General Policy and Regulation’. This is intuitive, as DHC is perceived as a sustainable heating and cooling technique and this analysis compromises policy-related documents. Third, Flanders seems mostly interested in using waste or residual heat as a heating source for DHC. The harbors and waste incineration plants are identified as potential and promising supply sources. This approach tries to conciliate environmental and economic incentives. Last, local councils get assigned a central role and the initiative is mostly taken by them. The policy documents and policy advices demonstrate that Flanders opts for a bottom-up organization. As DHC is very dependent on local conditions, this seems a logic step. Nevertheless, this can impede smaller councils to create DHC networks and slow down systematic and fast implementation of DHC throughout Flanders.

Keywords: district heating and cooling, flanders, overton database, policy analysis

Procedia PDF Downloads 46
25194 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 193
25193 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 428
25192 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining

Authors: İbrahi̇m Kara, Seher Arslankaya

Abstract:

Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.

Keywords: data mining, decision support systems, heart attack, health sector

Procedia PDF Downloads 358
25191 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 119
25190 Strategic Citizen Participation in Applied Planning Investigations: How Planners Use Etic and Emic Community Input Perspectives to Fill-in the Gaps in Their Analysis

Authors: John Gaber

Abstract:

Planners regularly use citizen input as empirical data to help them better understand community issues they know very little about. This type of community data is based on the lived experiences of local residents and is known as "emic" data. What is becoming more common practice for planners is their use of data from local experts and stakeholders (known as "etic" data or the outsider perspective) to help them fill in the gaps in their analysis of applied planning research projects. Utilizing international Health Impact Assessment (HIA) data, I look at who planners invite to their citizen input investigations. Research presented in this paper shows that planners access a wide range of emic and etic community perspectives in their search for the “community’s view.” The paper concludes with how planners can chart out a new empirical path in their execution of emic/etic citizen participation strategies in their applied planning research projects.

Keywords: citizen participation, emic data, etic data, Health Impact Assessment (HIA)

Procedia PDF Downloads 484
25189 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 185
25188 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales

Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng

Abstract:

Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.

Keywords: landslides, modelling, rainfall, suction

Procedia PDF Downloads 184
25187 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence

Procedia PDF Downloads 144
25186 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
25185 Learning Analytics in a HiFlex Learning Environment

Authors: Matthew Montebello

Abstract:

Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.

Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment

Procedia PDF Downloads 201
25184 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: communication, LED, Li-Fi, Wi-Fi

Procedia PDF Downloads 347