Search results for: initial geometric imperfection
2967 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm
Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo
Abstract:
Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation
Procedia PDF Downloads 842966 Comparison of Head Kinematics Resulting from Reconstructed Direct and Non-Direct Head-to-Glass Impacts in Ice Hockey
Authors: Ella Bowles, Alexandra Hughes, Clara Karton, T. Blaine Hoshizaki
Abstract:
As a fast-paced and physical game, body contact is an inevitable component in professional men's ice hockey. Despite efforts and advancements in material engineering to create safer equipment, brain trauma continues to persist and burden hockey players. Head and body contact occur in many ways and vary in terms of impact characteristics including the inbound velocity, force, direction, location, and compliance of the surfaces, which in turn influence head dynamics and brain injury outcomes including concussions. It has been reported that glass and board impacts account for approximately 40% of diagnosed concussions. This type of impact often involves the body (i.e., shoulder) contacting the surface prior to head contact, which may influence the head’s dynamic response by interrupting the head’s initial trajectory. However, the effect of body-first contact during head impacts is not well understood. The purpose of this research is to compare the head’s kinematic response during direct and non-direct (body-first) head-to-glass impacts representative of ice hockey events. Analysis was performed under varying impact conditions of neck stiffness and impact velocity as they have been shown to influence the resulting head dynamics. Data was collected by video analysis of the 2016-17 NHL season and event reconstructions were performed using a Hybrid III headform, an unbiased neck with tension springs (uONSA), and a high-speed impactor. Direct and non-direct impacts were analyzed at three common velocities (3.0, 5.0, 7.0 m/s), and three neck stiffnesses representing low (25%), medium (75%), and high (100%) contraction. Reconstructions representing non-direct head-to-glass impacts used a shoulder bumper as the first point of contact followed by the head’s contact with the glass. The same method and equipment were used to replicate the direct head impacts, where the head made initial contact with the glass. The dynamic response of the head, specifically the peak resultant linear and rotational acceleration, was collected for each impact and compared between direct and non-direct contact under each condition. The results show that non-direct impacts created an initial head acceleration resulting from shoulder contact, preceding a secondary acceleration response from head contact with the glass. Compared to direct head impacts, non-direct impacts consistently resulted in lower linear and rotational acceleration of the head under all neck stiffness and velocity conditions with an average decrease of 32.56 g and 689.33 rad/s2. However, the linear acceleration produced from shoulder contact in non-direct impacts resulted in a higher response compared to direct impacts with low neck stiffness at 5 m/s (55.2g and 41.2g, respectively) and 7 m/s (76.1g and 73.4g, respectively), and medium neck stiffness at 5 m/s (55.4g and 43.9g, respectively ) and 7 m/s (94.4g and 69.5g, respectively. These findings show that non-direct impacts produce complex scenarios that are further influenced by interaction with neck stiffness and velocity. This research provides an understanding of the fundamentals of body-first impacts. With this basis, an understanding of the implications of body-first head-impacts to better distinguish trauma based on events, and adapt protocols, evaluations, technologies, and equipment accordingly.Keywords: body-first, concussion, direct, hockey, kinematics
Procedia PDF Downloads 112965 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design
Authors: Ali Raad Hassan
Abstract:
In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency
Procedia PDF Downloads 2762964 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs
Authors: Regina A. Tayong, Reza Barati
Abstract:
A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation
Procedia PDF Downloads 1342963 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria
Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji
Abstract:
Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.Keywords: organic amendment, parent material, rainfall simulation, soil erosion
Procedia PDF Downloads 3482962 Flood-Induced River Disruption: Geomorphic Imprints and Topographic Effects in Kelantan River Catchment from Kemubu to Kuala Besar, Kelantan, Malaysia
Authors: Mohamad Muqtada Ali Khan, Nor Ashikin Shaari, Donny Adriansyah bin Nazaruddin, Hafzan Eva Bt Mansoor
Abstract:
Floods play a key role in landform evolution of an area. This process is likely to alter the topography of the earth’s surface. The present study area, Kota Bharu is very prone to floods extends from upstream of Kelantan River near Kemubu to the downstream area near Kuala Besar. These flood events which occur every year in the study area exhibit a strong bearing on river morphological set-up. In the present study, three satellite imageries of different time periods have been used to manifest the post-flood landform changes. The pre-processing of the images such as subset, geometric corrections and atmospheric corrections were carried-out using ENVI 4.5 followed by the analysis processes. Twenty sets of cross sections were plotted using software Erdas 9.2, ERDAS and ArcGis 10 for the all three images. The results show a significant change in the length of the cross section which suggest that the geomorphological processes play a key role in carving and shaping the river banks during the floods.Keywords: flood induced, geomorphic imprints, Kelantan river, Malaysia
Procedia PDF Downloads 5482961 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java
Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah
Abstract:
On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.Keywords: road geometry, K-factor, annual average daily traffic, north coast road
Procedia PDF Downloads 1622960 Cu3SbS3 as Anode Material for Sodium Batteries
Authors: Atef Y. Shenouda, Fei Xu
Abstract:
Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample.Keywords: Cu3SbS3, sodium batteries, thioacetamide, sulphur sources
Procedia PDF Downloads 792959 A Study of NT-ProBNP and ETCO2 in Patients Presenting with Acute Dyspnoea
Authors: Dipti Chand, Riya Saboo
Abstract:
OBJECTIVES: Early and correct diagnosis may present a significant clinical challenge in diagnosis of patients presenting to Emergency Department with Acute Dyspnoea. The common cause of acute dyspnoea and respiratory distress in Emergency Department are Decompensated Heart Failure (HF), Chronic Obstructive Pulmonary Disease (COPD), Asthma, Pneumonia, Acute Respiratory Distress Syndrome (ARDS), Pulmonary Embolism (PE), and other causes like anaemia. The aim of the study was to measure NT-pro Brain Natriuretic Peptide (BNP) and exhaled End-Tidal Carbon dioxide (ETCO2) in patients presenting with dyspnoea. MATERIAL AND METHODS: This prospective, cross-sectional and observational study was performed at the Government Medical College and Hospital, Nagpur, between October 2019 and October 2021 in patients admitted to the Medicine Intensive Care Unit. Three groups of patients were compared: (1) HFrelated acute dyspnoea group (n = 52), (2) pulmonary (COPD/PE)-related acute dyspnoea group (n = 31) and (3) sepsis with ARDS-related dyspnoea group (n = 13). All patients underwent initial clinical examination with a recording of initial vital parameters along with on-admission ETCO2 measurement, NT-proBNP testing, arterial blood gas analysis, lung ultrasound examination, 2D echocardiography, chest X-rays, and other relevant diagnostic laboratory testing. RESULTS: 96 patients were included in the study. Median NT-proBNP was found to be high for the Heart Failure group (11,480 pg/ml), followed by the sepsis group (780 pg/ml), and pulmonary group had an Nt ProBNP of 231 pg/ml. The mean ETCO2 value was maximum in the pulmonary group (48.610 mmHg) followed by Heart Failure (31.51 mmHg) and the sepsis group (19.46 mmHg). The results were found to be statistically significant (P < 0.05). CONCLUSION: NT-proBNP has high diagnostic accuracy in differentiating acute HF-related dyspnoea from pulmonary (COPD and ARDS)-related acute dyspnoea. The higher levels of ETCO2 help in diagnosing patients with COPD.Keywords: NT PRO BNP, ETCO2, dyspnoea, lung USG
Procedia PDF Downloads 832958 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles
Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban
Abstract:
In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272
Procedia PDF Downloads 3452957 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions
Authors: S. Bahadır Yüksel, Alptuğ Ünal
Abstract:
The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section
Procedia PDF Downloads 3332956 Integration of LCA and BIM for Sustainable Construction
Authors: Laura Álvarez Antón, Joaquín Díaz
Abstract:
The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability
Procedia PDF Downloads 4532955 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM
Authors: Yong Min You
Abstract:
The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple
Procedia PDF Downloads 2782954 Heat Transfer Analysis of Corrugated Plate Heat Exchanger
Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati
Abstract:
Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop
Procedia PDF Downloads 3142953 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2772952 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car
Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.
Abstract:
In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)
Procedia PDF Downloads 2442951 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices
Authors: A. Bertašienė
Abstract:
Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.Keywords: fluid flow, initial region, tube coefficient, distinct shape
Procedia PDF Downloads 3422950 Performance of Buildings with Base-Isolation System under Geometric Irregularities
Authors: Firoz Alam Faroque, Ankur Neog
Abstract:
Earthquake causes significant loss of lives and severe damage to infrastructure. Base isolator is one of the most suitable solutions to make a building earthquake resistant. Base isolation consists of installing an isolator along with the steel plates covered with pads of strong material like steel, rubber, etc. In our study, we have used lead rubber bearing (LRB). The basic idea of seismic isolation is based on the reduction of the earthquake-induced inertia forces by shifting the fundamental period of the structure out of dangerous resonance range, and concentration of the deformation and energy dissipation demands at the isolation and energy dissipation systems, which are designed for this purpose. In this paper, RC frame buildings have been modeled and analyzed by response spectrum method using ETABS software. The LRB used in the model is designed as per uniform building code (UBC) 97. It is found that time period for the base isolated structures are higher than that of the fixed base structure and the value of base shear significantly reduces in the case of base-isolated buildings. It has also been found that buildings with vertical irregularities give better performance as compared to building with plan irregularities using base isolators.Keywords: base isolation, base shear, irregularities in buildings, lead rubber bearing (LRB)
Procedia PDF Downloads 3292949 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique
Authors: Hassen M. Ouakad
Abstract:
In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin
Procedia PDF Downloads 2332948 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.
Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez
Abstract:
The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process
Procedia PDF Downloads 4452947 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel
Authors: Jay J. Vora, Vishvesh J. Badheka
Abstract:
This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding
Procedia PDF Downloads 2092946 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology
Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal
Abstract:
Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.Keywords: urology, surgical innovation, novel surgical techniques, publications
Procedia PDF Downloads 532945 The Influence of the Institutional Environment in Increasing Wealth: The Case of Women Business Operators in a Rural Setting
Authors: S. Archsana, Vajira Balasuriya
Abstract:
In Trincomalee of Sri Lanka, a post-conflict area, resettlement projects and policy initiatives are taking place to improve the wealth of the rural communities through promoting economic activities by way of encouraging the rural women to opt to commence and operate Micro and Small Scale (MSS) businesses. This study attempts to identify the manner in which the institutional environment could facilitate these MSS businesses owned and operated by women in the rural environment. The respondents of this study are the beneficiaries of the Divi Neguma Development Training Program (DNDTP); a project designed to aid women owned MSS businesses, in Trincomalee district. 96 women business operators, who had obtained financing facilities from the DNDTP, are taken as the sample based on fixed interval random sampling method. The study reveals that primary challenges encountered by 82% of the women business operators are lack of initial capital followed by 71% initial market finding and 35% access to technology. The low level of education and language barriers are the constraints in accessing support agencies/service providers. Institutional support; specifically management and marketing services, have a significant relationship with wealth augmentation. Institutional support at the setting-up stage of businesses are thin whereas terms and conditions of the finance facilities are perceived as ‘too challenging’. Although diversification enhances wealth of the rural women business operators, assistance from the institutional framework to prepare financial reports that are required for business expansion is skinny. The study further reveals that institutional support is very much weak in terms of providing access to new technology and identifying new market networks. A mechanism that could facilitate the institutional framework to support the rural women business operators to access new technology and untapped market segments, and assistance in preparation of legal and financial documentation is recommended.Keywords: business facilitation, institutional support, rural women business operators, wealth augmentation
Procedia PDF Downloads 4452944 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads
Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo
Abstract:
Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads
Procedia PDF Downloads 2502943 Introduction, Establishment, and Transformation: An Initial Exploration of the Cultural Shifts and Influence of Fa Yi Chong De, Yi-Kuan-Tao in Malaysian Chinese Community
Authors: Lim Pey Huan
Abstract:
Yi-Kuan-Tao has been developing in Malaysia for nearly 60 years. It was initially introduced from mainland China and later from Taiwan starting from the 1970s. Yi-Kuan-Tao was considered a 'new religion' for the local Chinese community in Malaysia in its early stages, as Chinese immigrants primarily practiced Taoism, Buddhism, Christianity, or Catholicism upon settling in the region. The overseas propagation and development of Yi-Kuan-Tao today primarily occur through Taiwanese temples, which began spreading abroad as early as 1949. Particularly since the 1970s, with the rapid economic growth of Taiwan, various branches of Taiwanese Yi-Kuan-Tao have gained economic strength to propagate abroad, further expanding the influence of Yi-Kuan-Tao overseas. Southeast Asia is the region out from Taiwan where the propagation and development of Yi-Kuan-Tao are fastest and most concentrated. With approximately over 6 million Chinese inhabitants, Malaysia's pursuit of traditional Chinese culture has led to a flourishing interest in Yi-Kuan-Tao, particularly its advocacy of the unity of Confucianism, Buddhism, and Taoism, with an emphasis on promoting Confucian thought. Moreover, Taiwan's rapid economic development since the 1970s has enabled Yi-Kuan-Tao to allocate significant human and financial resources for external propagation efforts. Additionally, Malaysia's government has adopted a relatively tolerant policy towards religion since that time, further fostering the flourishing development of Yi-Kuan-Tao in Malaysia. Furthermore, this thesis aims to strengthen the lineage and continuity of the Yi-Kuan-Tao tradition, particularly the branch of Fa Yi Chong De, through the perspective of Heavenly Mandate (天命). By examining the different origins and ethnic backgrounds, it investigates how the Malaysian Chinese community has experienced different changes through the cultural baptism of religion, thus delving into the religious influence of Yi-Kuan-Tao. Given that the Fa Yi Chong De Academy in Taiwan is currently in an active development and construction phase, academic works related to Yi-Kuan-Tao will lay a more solid academic foundation for the future establishment of the academy.Keywords: initial exploration, cultural shifts, Yi-Kuan-Tao, Malaysian Chinese community
Procedia PDF Downloads 882942 Layers of Identities in Nahdliyyin Mosque Architecture and Some Related Socio-Political Context Within
Authors: Yulia Eka Putrie, Widjaja Martokusumo
Abstract:
The development of architecture today indicates that an architectural object often does not represent one single identity only. One architectural object could represents layers of multiple identities of an increasingly complex society. Mosque architecture for example, is mainly associated with one religious identity; that mosque architecture serves as the representation of Islamic identity. However, on many occasions, mosque architecture also serves as the representation of other motives, such as political, social, even individual identity. In normal circumstances, these layers of identities are not always seen or realized by common people outside the community. They are only represented implicitly in some symbolic forms, activities, and events. On the other hand, in specific circumstances, these kinds of identities were represented explicitly in mosque architecture. This paper is a part of an initial research on the representation of socio-political identities in Nahdliyyin mosques in East Java, Indonesia. Nahdliyyin mosques were chosen as the object of research because of its significance in Indonesian socio-political context, because majority of Indonesian muslims are culturally associated with Nahdlatul Ulama (NU) with its aswaja doctrine. Some frictions in mosque ownership and management between Nahdliyyin and other islamic school of thoughts, has resulted in preventive efforts, where some of the efforts are related to the representation of their identity in their mosque architecture. The research is a field research that took place in Malang, East Java. Malang is one of main cities in East Java; a cultural and regional basis of NU and Nahdliyyin people. Formal analysis were conducted in ten large Nahdliyyin mosques in Malang. Some structured and in-depth interviews were also held to explore the motives of identity representation in some architectural aspects of the mosques. The result of this initial study indicates that there are layers of identities which were manifested in the studied mosques. These layers of identities in Nahdliyyin mosques were based on the same main values, but represented through various formal expressions. Furthermore, the study also brings the deeper understanding on socio-political context of mosques in Nahdliyyin culture.Keywords: Nahdliyyin mosque architecture, layers of identities, representation, Nahdlatul Ulama
Procedia PDF Downloads 5232941 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method
Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami
Abstract:
Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH‑). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.Keywords: adsorption-cross linking, immobilization, lipase, resin
Procedia PDF Downloads 3742940 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways
Authors: Vinayak Malaghan, Digvijay Pawar
Abstract:
Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.Keywords: operating speed, design consistency, continuous speed profile data, day and night time
Procedia PDF Downloads 1622939 A Bayesian Approach for Analyzing Academic Article Structure
Authors: Jia-Lien Hsu, Chiung-Wen Chang
Abstract:
Research articles may follow a simple and succinct structure of organizational patterns, called move. For example, considering extended abstracts, we observe that an extended abstract usually consists of five moves, including Background, Aim, Method, Results, and Conclusion. As another example, when publishing articles in PubMed, authors are encouraged to provide a structured abstract, which is an abstract with distinct and labeled sections (e.g., Introduction, Methods, Results, Discussions) for rapid comprehension. This paper introduces a method for computational analysis of move structures (i.e., Background-Purpose-Method-Result-Conclusion) in abstracts and introductions of research documents, instead of manually time-consuming and labor-intensive analysis process. In our approach, sentences in a given abstract and introduction are automatically analyzed and labeled with a specific move (i.e., B-P-M-R-C in this paper) to reveal various rhetorical status. As a result, it is expected that the automatic analytical tool for move structures will facilitate non-native speakers or novice writers to be aware of appropriate move structures and internalize relevant knowledge to improve their writing. In this paper, we propose a Bayesian approach to determine move tags for research articles. The approach consists of two phases, training phase and testing phase. In the training phase, we build a Bayesian model based on a couple of given initial patterns and the corpus, a subset of CiteSeerX. In the beginning, the priori probability of Bayesian model solely relies on initial patterns. Subsequently, with respect to the corpus, we process each document one by one: extract features, determine tags, and update the Bayesian model iteratively. In the testing phase, we compare our results with tags which are manually assigned by the experts. In our experiments, the promising accuracy of the proposed approach reaches 56%.Keywords: academic English writing, assisted writing, move tag analysis, Bayesian approach
Procedia PDF Downloads 3342938 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture
Authors: K. N. Ashna
Abstract:
Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test
Procedia PDF Downloads 271