Search results for: forward energy density
11288 Energy Efficiency in Hot Arid Climates Code Compliance and Enforcement for Residential Buildings
Authors: Mohamed Edesy, Carlo Cecere
Abstract:
This paper is a part of an ongoing research that proposes energy strategies for residential buildings in hot arid climates. In Egypt, the residential sector is dominated by increase in consumption rates annually. A building energy efficiency code was introduced by the government in 2005; it indicates minimum design and application requirements for residential buildings. Submission is mandatory and should lead to about 20% energy savings with an increase in comfort levels. However, compliance is almost nonexistent, electricity is subsidized and incentives to adopt energy efficient patterns are very low. This work presents an overview of the code and analyzes the impact of its introduction on different sectors. It analyses compliance barriers and indicates challenges that stand in the way of a realistic enforcement. It proposes an action plan for immediate code enforcement, updating current code to include retrofit, and development of rating systems for buildings. This work presents a broad national plan for energy efficiency empowerment in the residential sector.Keywords: energy efficiency, housing, energy policies, code enforcement
Procedia PDF Downloads 34911287 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides
Procedia PDF Downloads 19911286 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole
Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha
Abstract:
1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties
Procedia PDF Downloads 9211285 Solar Technology: A Review of Government-Sponsored Green Energy
Authors: Christopher Battle
Abstract:
The pursuit of a sustainable future is dependent on the ability of governments from the national to municipal level. The politics of energy and the development of state-sponsored photovoltaic cell expansion can nebulize in several ways based on a state or nation's physical and human geography. This study conducts a comparative analysis of the energy and solar program of Turkey, Pennsylvania, and Philadelphia. The study aims to assess the city of Philadelphia's solar policies in contrast with both its political history and the photovoltaic programs of Turkey, a world leader in solar system development, and Pennsylvania's history of energy regulation. This comparative study found that after hundreds of bills and regulations over decades, sustainable energy development in affordable housing and new construction is the next phase of State-Sponsored Green energy for the city of Philadelphia.Keywords: Turkey, solar power, Philadelphia, affordable energy development
Procedia PDF Downloads 9511284 Design of Transformerless Electric Energy Router in Smart Home
Authors: Weidong Fu, Qingsong Wang, Wei Hua, Ming Cheng, Giuseppe Buja
Abstract:
A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system.Keywords: transformerless, electric energy router, power flow, power quality, power factor
Procedia PDF Downloads 1711283 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process
Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira
Abstract:
Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.Keywords: electrocoagulation, fish, food industry, wastewater
Procedia PDF Downloads 25011282 Urbanization and Income Inequality in Thailand
Authors: Acumsiri Tantikarnpanit
Abstract:
This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.Keywords: income inequality, nighttime light, population density, Thailand, urbanization
Procedia PDF Downloads 7711281 Performance of High Density Genotyping in Sahiwal Cattle Breed
Authors: Hamid Mustafa, Huson J. Heather, Kim Eiusoo, Adeela Ajmal, Tad S. Sonstegard
Abstract:
The objective of this study was to evaluate the informativeness of Bovine high density SNPs genotyping in Sahiwal cattle population. This is a first attempt to assess the Bovine HD SNP genotyping array in any Pakistani indigenous cattle population. To evaluate these SNPs on genome wide scale, we considered 777,962 SNPs spanning the whole autosomal and X chromosomes in Sahiwal cattle population. Fifteen (15) non related gDNA samples were genotyped with the bovine HD infinium. Approximately 500,939 SNPs were found polymorphic (MAF > 0.05) in Sahiwal cattle population. The results of this study indicate potential application of Bovine High Density SNP genotyping in Pakistani indigenous cattle population. The information generated from this array can be applied in genetic prediction, characterization and genome wide association studies of Pakistani Sahiwal cattle population.Keywords: Sahiwal cattle, polymorphic SNPs, genotyping, Pakistan
Procedia PDF Downloads 42811280 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.Keywords: polyethylene, polymerization, density, melt index, neural network
Procedia PDF Downloads 14411279 Recommendations for Environmental Impact Assessment of Geothermal Projects on Mature Oil Fields
Authors: Daria Karasalihovic Sedlar, Lucija Jukic, Ivan Smajla, Marija Macenic
Abstract:
This paper analyses possible geothermal energy production from a mature oil reservoir based on exploitation of underlying aquifer thermal energy for the purpose of heating public buildings. Research was conducted based on the case study of the City of Ivanic-Grad public buildings energy demand and Ivanic oil filed that is situated in the same area. Since the City of Ivanic is one of the few cities in the EU where hydrocarbon exploitation has been taking place for decades almost entirely in urban area, decommissioning of oil wells is inevitable; therefore, the research goal was to investigate how to extend the life-time of the reservoir by exploiting geothermal brine beneath the oil reservoir in an environmental friendly manner. This kind of a project is extremely complex in all segments, from documentation preparation, implementation of technological solutions, and providing ecological measures for environmentally acceptable geothermal energy production and utilization. New mining activities that will be needed for the development of geothermal project at the observed Hydrocarbon Exploitation Field Ivanic will be carried out in order to prepare wells for increasing geothermal brine production. These operations involve the conversion of existing wells (well completion for conversion of the observation wells to production ones) along with workover activities, installation of new heat exchangers, and pipelines. Since the wells are in the urban area of the City of Ivanic-Grad in high density populated area, the inhabitants will be exposed to the different environmental impacts during preparation phase of the project. For the purpose of performing workovers, it will be necessary to secure access to wellheads of existing wells. This paper gives guidelines for describing potential impacts on environment components that could occur during geothermal production preparation on existing mature oil filed, recommends possible protection measures to mitigate these impacts, and gives recommendations for environmental monitoring.Keywords: geothermal energy production, mature oil filed, environmental impact assessment, underlying aquifer thermal energy
Procedia PDF Downloads 15211278 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification
Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih
Abstract:
Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.Keywords: methanol, palm oil, simulation, transesterification, triolein
Procedia PDF Downloads 32211277 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data
Authors: Rudra P. Pradhan
Abstract:
This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.Keywords: energy consumption, financial development, FATF countries, Panel VECM
Procedia PDF Downloads 26711276 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System
Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim
Abstract:
This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation
Procedia PDF Downloads 45511275 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications
Authors: Bryan D. Llenarizas, Maria Carla F. Manzano
Abstract:
The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole
Procedia PDF Downloads 8411274 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics
Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah
Abstract:
A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.Keywords: WSN, routing, energy, heuristic
Procedia PDF Downloads 34411273 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.Keywords: city, consumption, energy, generation
Procedia PDF Downloads 13011272 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 48911271 Electrocatalysts for Lithium-Sulfur Energy Storage Systems
Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund
Abstract:
Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials
Procedia PDF Downloads 36911270 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 15711269 Evaluation of Energy Efficiency Development Perspectives in Lithuanian Furniture Industry
Authors: J. Vasauskaite
Abstract:
From the perspective of Lithuanian furniture enterprises, the role of energy efficiency is significant as it leads to direct economic benefits, increased competitiveness and higher productivity. There are various possible improvements in energy efficiency in industry: changes in the production process, investment in R&D, implementation of energy-saving technologies or energy management systems. The research aims to contribute the understanding of energy efficiency importance in industry by presenting possible improvements of energy use in different manufacturing process of enterprises. The evaluation methodology included quantitative and qualitative research methods: the comparative and statistical analysis of primary and secondary sources of information. This paper provides the detailed analysis of the energy efficiency development opportunities and challenges in Lithuanian furniture industry. The results of the study show the importance of technological innovations, energy efficiency policies and environmental management strategies in developing energy efficiency within the wood and furniture industry. The analysis of energy efficiency development in Lithuanian furniture industry showed that the industrial activities are influenced by various internal and external factors such as increasing flows of products, human resources and overall management decisions; dynamic growth and increasing competition; emerging need for environmental information. In the light of these factors, Lithuanian furniture industry has undergone significant changes – restructuring, technological advances and business model innovations, allowing it to be more export-oriented and focus on upgrading quality, design and innovation.Keywords: energy efficiency, energy policy, furniture industry, technological innovation
Procedia PDF Downloads 51011268 Control System Design for a Simulated Microbial Electrolysis Cell
Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen
Abstract:
Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller
Procedia PDF Downloads 24811267 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites
Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa
Abstract:
The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.Keywords: Al6061, red mud, tensile strength, hardness and microstructures
Procedia PDF Downloads 56411266 Modelling Residential Space Heating Energy for Romania
Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala
Abstract:
This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies
Procedia PDF Downloads 54311265 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior
Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh
Abstract:
Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density
Procedia PDF Downloads 31311264 Power Allocation in User-Centric Cell-Free Massive Multiple-Input Multiple-Output Systems with Limited Fronthaul Capacity
Authors: Siminfar Samakoush Galougah
Abstract:
In this paper, we study two power allocation problems for an uplink user-centric (UC) cell-free massive multiple-input multiple-output (CF-mMIMO) system. Besides, we assume each access point (AP) is connected to a central processing unit (CPU) via a fronthaul link with limited capacity. To efficiently use the fronthaul capacity, two strategies for transmitting signals from APs to the CPU are employed, namely, compress-forward estimate (CFE), estimate-compress-forward (ECF). The capacity of the aforementioned strategies in user-centric CF-mMIMO is drived. Then, we solved the two power allocation problems with minimum Spectral Efficiency (SE) and sum-SE maximization objectives for ECF and CFE strategies.Keywords: cell-free massive MIMO, limited capacity fronthaul, spectral efficiency
Procedia PDF Downloads 7311263 Understanding Farmers’ Perceptions Towards Agrivoltaics Using Decision Tree Algorithms
Authors: Mayuri Roy Choudhury
Abstract:
In recent times the concept of agrivoltaics has gained popularity due to the dual use of land and the added value provided by photovoltaics in terms of renewable energy and crop production on farms. However, the transition towards agrivoltaics has been slow, and our research tries to investigate the obstacles leading towards the slow progress of agrivoltaics. We applied data science decision tree algorithms to quantify qualitative perceptions of farmers in the United States for agrivoltaics. To date, there has not been much research that mentions farmers' perceptions, as most of the research focuses on the benefits of agrivoltaics. Our study adds value by putting forward the voices of farmers, which play a crucial towards the transition to agrivoltaics in the future. Our results show a mixture of responses in favor of agrivoltaics. Furthermore, it also portrays significant concerns of farmers, which is useful for decision-makers when it comes to formulating policies for agrivoltaics.Keywords: agrivoltaics, decision-tree algorithms, farmers perception, transition
Procedia PDF Downloads 19211262 Investigating Factors Influencing Generation Z’s Pro-Environmental Behavior to Support the Energy Transition in Jakarta, Indonesia
Authors: Phimsupha Kokchang, Divine Ifransca Wijaya
Abstract:
The energy transition is crucial for mitigating climate change and achieving sustainable development and resilience. As the energy transition advances, generation Z is entering the economic world and will soon be responsible for taking care of the environment. This study aims to investigate the factors influencing generation Z’s pro-environmental behavior to support the energy transition. The theory of planned behavior approach was combined with the pro-environmental behavior concept to examine generation Z’s support toward the energy transition through participating in activism, using energy from renewable sources, opting for energy-efficient utilities or vehicles, and influencing others. Data were collected through an online questionnaire of 400 respondents aged 18-26 living in Jakarta, Indonesia. Partial least square structural equation modeling (PLS-SEM) using SmartPLS 3.0 software was used to analyze the reliability and validity of the measurement model. The results show that attitude, subjective norms, and perceived behavior control positively correlate with generation Z’s pro-environmental behavior to support the energy transition. This finding could enhance understanding and provide insights to formulate effective strategies and policies to increase generation Z’s support towards the energy transition. This study contributes to the energy transition discussion as it is included in the Sustainable Development Goals, as well as pro-environmental behavior and theory of planned behavior literature.Keywords: energy transition, pro-environmental behavior, theory of planned behavior, generation Z
Procedia PDF Downloads 12011261 Efficiency Enhancement in Solar Panel
Authors: R. S. Arun Raj
Abstract:
In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted.Keywords: on-grid and off-grid systems, pyro-electric effect, pay-back calculations, solar panel
Procedia PDF Downloads 59511260 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran
Authors: M. Goodarzi, M. Mohammadi, A. Gharib
Abstract:
Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method
Procedia PDF Downloads 54211259 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication
Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali
Abstract:
Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws
Procedia PDF Downloads 15