Search results for: electrical vehicle driving system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19950

Search results for: electrical vehicle driving system

19140 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 104
19139 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits

Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury

Abstract:

Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.

Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular

Procedia PDF Downloads 159
19138 Curriculum System Optimization under Outstanding Engineers Training Mode of Mechanical and Electronic Engineering

Authors: El Miloudi Djelloul

Abstract:

Teaching program of `A plan for educating and training outstanding engineers' is divided into intramural teaching program and enterprise practice teaching program. Based on analyzing the basic principles of teaching plans which teaching plan follows for undergraduate mechanical and electrical engineering, major contents of specialty teaching project are studied amply. The study contents include the system optimization and reform of common curriculum, specialty curriculum and practice curriculum. The practice indicated that under outstanding engineers training mode, the optimized curriculum system have practicability, and achieve the training objectives.

Keywords: curriculum system, mechanical and electronic engineering, outstanding engineers, teaching program

Procedia PDF Downloads 506
19137 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety

Procedia PDF Downloads 98
19136 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation

Authors: Mohd Tariq

Abstract:

The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.

Keywords: Packed U-Cell (PUC) inverter, five-phase system, pulse width modulation (PWM), induction motor (IM)

Procedia PDF Downloads 171
19135 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 564
19134 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models

Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel

Abstract:

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.

Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling

Procedia PDF Downloads 147
19133 Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Slide Profile

Authors: Orhan Kurtuluş, Cüneyt Yavuz

Abstract:

The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods.

Keywords: control unit design, end of line, modular design, sliding door system

Procedia PDF Downloads 433
19132 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle

Procedia PDF Downloads 441
19131 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.

Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain

Procedia PDF Downloads 44
19130 Temperature Effect on Changing of Electrical Impedance and Permittivity of Ouargla (Algeria) Dunes Sand at Different Frequencies

Authors: Naamane Remita, Mohammed laïd Mechri, Nouredine Zekri, Smaïl Chihi

Abstract:

The goal of this study is the estimation real and imaginary components of both electrical impedance and permittivity z', z'' and ε', ε'' respectively, in Ouargla dunes sand at different temperatures and different frequencies, with alternating current (AC) equal to 1 volt, using the impedance spectroscopy (IS). This method is simple and non-destructive. the results can frequently be correlated with a number of physical properties, dielectric properties and the impacts of the composition on the electrical conductivity of solids. The experimental results revealed that the real part of impedance is higher at higher temperature in the lower frequency region and gradually decreases with increasing frequency. As for the high frequencies, all the values of the real part of the impedance were positive. But at low frequency the values of the imaginary part were positive at all temperatures except for 1200 degrees which were negative. As for the medium frequencies, the reactance values were negative at temperatures 25, 400, 200 and 600 degrees, and then became positive at the rest of the temperatures. At high frequencies of the order of MHz, the values of the imaginary part of the electrical impedance were in contrast to what we recorded for the middle frequencies. The results showed that the electrical permittivity decreases with increasing frequency, at low frequency we recorded permittivity values of 10+ 11, and at medium frequencies it was 10+ 07, while at high frequencies it was 10+ 02. The values of the real part of the electrical permittivity were taken large values at the temperatures of 200 and 600 degrees Celsius and at the lowest frequency, while the smallest value for the permittivity was recorded at the temperature of 400 degrees Celsius at the highest frequency. The results showed that there are large values of the imaginary part of the electrical permittivity at the lowest frequency and then it starts decreasing as the latter increases (the higher the frequency the lower the values of the imaginary part of the electrical permittivity). The character of electrical impedance variation indicated an opportunity to realize the polarization of Ouargla dunes sand and acquaintance if this compound consumes or produces energy. It’s also possible to know the satisfactory of equivalent electric circuit, whether it’s miles induction or capacitance.

Keywords: electrical impedance, electrical permittivity, temperature, impedance spectroscopy, dunes sand ouargla

Procedia PDF Downloads 30
19129 Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 443
19128 Comparative Analysis of Edge Detection Techniques for Extracting Characters

Authors: Rana Gill, Chandandeep Kaur

Abstract:

Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.

Keywords: segmentation, edge detection, text, extracting characters

Procedia PDF Downloads 415
19127 A Study on Bicycle Riding Behavior on Bike-Only Road

Authors: Hyeon Jong Yoo, Jae Hwan Yang, Dong Kyu Kim

Abstract:

Recently, riding a bicycle is recommended as an eco-friendly means of transportation. In Seoul, the mayor has secured budget for extending bicycle infrastructure. As bicycle rental centers are adopted in places, more citizens are using bike rental service on bike-only roads for leisure. However, most of the citizens are not experienced in riding bicycles. They usually do not wear helmets, keep the balance of bicycle riding, and pay attention to nearby occasions. Therefore, in this study, bicycles on Han-river bike-only road were tracked, and their behaviors were analyzed in order to show how dangerously beginner riders are riding. The number of conflicts is calculated to evaluate riding safety on the most crowded bike-only road. As a result, conflicts between beginner riders and fast-driving skilled drivers are frequently observed especially at night, and on weekends. In conclusion, it is suggested that the government should acknowledge citizens the fact that bikes are vehicles and adopt a test for bike driving.

Keywords: bicycles, safety, bike-only road, policy proposal

Procedia PDF Downloads 345
19126 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 524
19125 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: conductive yarns, moisture textile sensor, industry, material

Procedia PDF Downloads 233
19124 A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2

Authors: Youn-Sung Kim, Hye-Mi Kim, Sang-Hoon Seo, Jaden Cha

Abstract:

This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety.

Keywords: safety function, failure mode effect, IEC 61508-2, diagnostic analysis, stage control system

Procedia PDF Downloads 267
19123 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 175
19122 The Impact of a Sustainable Solar System on the Growth of Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

This study examines the effects of a solar-based heating system, in a north-‎south oriented agricultural greenhouse on the development of strawberry ‎plants during winter. This system relies on the circulation of water as a heat ‎transfer fluid in a closed circuit installed on the greenhouse roof to store heat ‎during the day and release it inside at night. A comparative experimental ‎study was conducted in two greenhouses, one experimental with the solar ‎heating system and the other for control without any heating system. Both ‎greenhouses are located on the terrace of the Solar Energy and Environment ‎Laboratory of the Mohammed V University in Rabat, Morocco. The devel-‎oped heating system consists of a copper coil inserted in double glazing and ‎placed on the roof of the greenhouse, a water pump circulator, a battery, and ‎a photovoltaic solar panel to power the electrical components. This inexpen-‎sive and environmentally friendly system allows the greenhouse to be heated ‎during the winter and improves its microclimate system. This improvement ‎resulted in an increase in the air temperature inside the experimental green-‎house by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and ‎‎35% compared to the control greenhouse and the ambient air, respectively, ‎throughout the winter. For the agronomic performance, it was observed that ‎the production was 17 days earlier than in the control greenhouse.‎

Keywords: sustainability, solar energy, thermal energy storage.‎, greenhouse heating

Procedia PDF Downloads 18
19121 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 158
19120 Study of Linear Generator for Vibration Energy Harvesting of Frequency more than 50Hz

Authors: Seong-Jin Cho, Jin Ho Kim

Abstract:

Energy harvesting is the technology which gathers and converts external energies such as light, vibration and heat which are disposed into reusable electrical energy and uses such electrical energy. The vibration energy harvesting is very interesting technology because it produces very high density of energy and unaffected by the climate. Vibration energy can be harvested by the electrostatic, electromagnetic and piezoelectric systems. The electrostatic system has low energy conversion efficiency, and the piezoelectric system is expensive and needs the frequent maintenance because it is made of piezoelectric ceramic. On the other hand, the electromagnetic system has a long life time and high harvesting efficiency, and it is relatively cheap. The electromagnetic harvesting system includes the linear generator and the rotary-type generator. The rotary-type generators require the additional mechanical conversion device if it uses linear motion of vibration. But, the linear generator uses directly linear motion of vibration without a mechanical conversion device, and it has uncomplicated structure and light weight compared with the rotary-type generator. Therefore, the linear electromagnetic generator can be useful in using vibration energy harvesting. The pole transformer systems need electricity sensor system for sending voltage and power information to administrator. Therefore, the battery is essential, and its regular maintenance of replacement is required. In case of the transformer of high location in mountainous areas, the person can’t easily access it resulting in high maintenance cost. To overcome these problems, we designed and developed the linear electromagnetic generator which can replace battery in electricity sensor system for sending voltage and power information of the pole transformer. And, it uses vibration energy of frequency more than 50 Hz by the pole transformer. In order to analyze the electromagnetic characteristics of small linear electric generator, a commercial electromagnetic finite element analysis program "MAXWELL" was used. Then, through the actual production and experiment of linear generator, we confirmed output power of linear generator.

Keywords: energy harvesting, frequency, linear generator, experiment

Procedia PDF Downloads 248
19119 Directional Solidification of Al–Cu–Mg Eutectic Alloy

Authors: Yusuf Kaygısız, Necmetti̇n Maraşlı

Abstract:

Aluminum alloys are produced and used at various areas of industry and especially in the aerospace industry. The advantages of these alloys over traditional iron-based alloys are lightweight, corrosion resistance, and very good thermal and electrical conductivity. The aim of this work is to experimentally investigate the effect of growth rates on the eutectic spacings (λ), microhardness, tensile strength and electrical resistivity in Al–30wt.%Cu–6wt.%Mg eutectic alloy. Al–Cu–Mg eutectic alloy was directionally solidified at a constant temperature gradient (G=8.55 K/mm) with different growth rates, 9.43 to 173.3 µm/s by using a Bridgman-type furnace. The dependency of microstructure, microhardness, tensile strength and electrical resistivity for directionally solidified the Al-Cu-Mg eutectic alloy were investigated. Eutectic microstructure is consisting of regular Al2CuMg lamellar and Al2Cu rod phases with in the α (Al) solid solution matrix. The lamellar eutectic spacings were measured from transverse sections of the samples. It was found that the value of microstructures decrease with the increase the value the growth rates. The microhardness, tensile strength and electrical resistivity of the alloy also were measured from sample and relationships between them were experimentally analyzed by using regression analysis. According to present results, values tensile strength and electrical resistivity increase with increasing growth rates.

Keywords: directional solidification, aluminum alloys, microstructure, electrical properties, hardness test

Procedia PDF Downloads 284
19118 Optimisation of Intermodal Transport Chain of Supermarkets on Isle of Wight, UK

Authors: Jingya Liu, Yue Wu, Jiabin Luo

Abstract:

This work investigates an intermodal transportation system for delivering goods from a Regional Distribution Centre to supermarkets on the Isle of Wight (IOW) via the port of Southampton or Portsmouth in the UK. We consider this integrated logistics chain as a 3-echelon transportation system. In such a system, there are two types of transport methods used to deliver goods across the Solent Channel: one is accompanied transport, which is used by most supermarkets on the IOW, such as Spar, Lidl and Co-operative food; the other is unaccompanied transport, which is used by Aldi. Five transport scenarios are studied based on different transport modes and ferry routes. The aim is to determine an optimal delivery plan for supermarkets of different business scales on IOW, in order to minimise the total running cost, fuel consumptions and carbon emissions. The problem is modelled as a vehicle routing problem with time windows and solved by genetic algorithm. The computing results suggested that accompanied transport is more cost efficient for small and medium business-scale supermarket chains on IOW, while unaccompanied transport has the potential to improve the efficiency and effectiveness of large business scale supermarket chains.

Keywords: genetic algorithm, intermodal transport system, Isle of Wight, optimization, supermarket

Procedia PDF Downloads 356
19117 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 447
19116 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method

Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria

Abstract:

This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.

Keywords: rocker, suspension, the finite element method, mechatronics engineering

Procedia PDF Downloads 526
19115 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 181
19114 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 312
19113 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 132
19112 Hybrid Velocity Control Approach for Tethered Aerial Vehicle

Authors: Lovesh Goyal, Pushkar Dave, Prajyot Jadhav, GonnaYaswanth, Sakshi Giri, Sahil Dharme, Rushika Joshi, Rishabh Verma, Shital Chiddarwar

Abstract:

With the rising need for human-robot interaction, researchers have proposed and tested multiple models with varying degrees of success. A few of these models performed on aerial platforms are commonly known as Tethered Aerial Systems. These aerial vehicles may be powered continuously by a tether cable, which addresses the predicament of the short battery life of quadcopters. This system finds applications to minimize humanitarian efforts for industrial, medical, agricultural, and service uses. However, a significant challenge in employing such systems is that it necessities attaining smooth and secure robot-human interaction while ensuring that the forces from the tether remain within the standard comfortable range for the humans. To tackle this problem, a hybrid control method that could switch between two control techniques: constant control input and the steady-state solution, is implemented. The constant control approach is implemented when a person is far from the target location, and error is thought to be eventually constant. The controller switches to the steady-state approach when the person reaches within a specific range of the goal position. Both strategies take into account human velocity feedback. This hybrid technique enhances the outcomes by assisting the person to reach the desired location while decreasing the human's unwanted disturbance throughout the process, thereby keeping the interaction between the robot and the subject smooth.

Keywords: unmanned aerial vehicle, tethered system, physical human-robot interaction, hybrid control

Procedia PDF Downloads 84
19111 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 130