Search results for: data integrity
25042 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets
Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer
Abstract:
Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact
Procedia PDF Downloads 20125041 Challenge of the Credibility of Witnesses in the International Criminal Court and the Precondition to Establish the Truth
Authors: Romina Beqiri
Abstract:
In the context of the prosecution of those responsible for the commission of the most hideous crimes and the fight against impunity, a fundamental role is played by witnesses of the crimes who contribute to ascertaining the ‘procedural truth’. This article examines recent decisions and legislation of the Hague-based International Criminal Court in terms of the endangerment of the integrity of the criminal proceedings in consequence of witness tampering. The analysis focuses on the new developments in the courtroom and the academia, in particular, on the first-ever sentence confirming the charges of corruptly influencing witnesses, interpretation of presenting false evidence and giving false testimony when under an obligation to tell the truth. Confronted with recent tampering with witnesses and their credibility at stake in the ongoing cases, the research explores different Court’s decisions and scholars’ legal disputes concerning the deterrence approach to punish the authors of offences against the administration of justice when committed intentionally. Therefore, the analysis concludes that the Court cannot tolerate any witness false testimony and should enhance consistency and severity of sanctions for the sake of fair trial and end impunity.Keywords: International Criminal Court, administration of justice, credibility of witness, fair trial, false testimony, witness tampering
Procedia PDF Downloads 17325040 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management
Authors: M. Moslehpour, S. Khorsandi
Abstract:
As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.Keywords: CGA, ICMPv6, IPv6, malicious node, modifier, NDP, overall load, SEND, trust management
Procedia PDF Downloads 18825039 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor
Authors: Pranav Gulati, Isha Sharma
Abstract:
Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring
Procedia PDF Downloads 28225038 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 47925037 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company
Authors: Rahma Saleh Hussein Al Balushi
Abstract:
Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.Keywords: asset management ISO55001, standard procedures process, governance, CMMS
Procedia PDF Downloads 13025036 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction
Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.Keywords: computed tomography, computed laminography, compressive sending, low-dose
Procedia PDF Downloads 47025035 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD
Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik
Abstract:
The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet
Procedia PDF Downloads 57825034 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 15425033 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 15625032 Nuclear Decay Data Evaluation for 217Po
Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen
Abstract:
Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation
Procedia PDF Downloads 43625031 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information
Authors: I. Nyoman Mahayasa Adiputra
Abstract:
Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city
Procedia PDF Downloads 13525030 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs
Authors: Mitzi S. Brammer
Abstract:
Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.Keywords: inclusion, higher education, pedagogy, equity, diversity
Procedia PDF Downloads 6925029 Developing an Interpretive Plan for Qubbet El-Hawa North Archaeological Site in Aswan, Egypt
Authors: Osama Amer Mohyeldin Mohamed
Abstract:
Qubbet el-Hawa North (QHN) is an example of an archaeological site in West-Aswan and It has not opened to the public yet and has been under excavation since its discovery in 2013 as a result of the illegal digging that happened in many sites in Egypt because of the unstable situation and the absence of security. The site has the potential to be one of the most attractive sites in Aswan. Moreover, it deserves to be introduced to the visitors in a good manner appropriate to its great significance. Both interpretation and presentation are crucial inseparable tools that communicate the archaeological site's significance to the public and raise their awareness. Moreover, it helps them to understand the past and appreciate archaeological assets. People will never learn or see anything from ancient remains unless it is explained. They would only look at it as ancient and charming. They expect a story, and more than knowledge, authenticity, or even supporting preservation actions, they want to enjoy and be entertained. On the other hand, a lot of archaeologists believe that planning an archaeological site for entertaining visitors deteriorates it and affects its authenticity. Thus, it represents a challenge to design a model for visitors’ experience that meets their expectations and needs while safeguarding the site’s integrity. The article presents a proposal for an interpretation plan for the site of Qubbet el-Hawa North.Keywords: heritage interpretation and presentation, archaeological site management, qubbet el-hawa North, local community engagement, accessibility
Procedia PDF Downloads 3325028 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 35325027 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39925026 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 31825025 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company
Authors: Rahma Al Balushi
Abstract:
Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS
Procedia PDF Downloads 21125024 Importance of Ethics in Cloud Security
Authors: Pallavi Malhotra
Abstract:
This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education
Procedia PDF Downloads 32725023 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury
Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav
Abstract:
Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.Keywords: aquaporin, gene expression, lung injury, toxicant exposure
Procedia PDF Downloads 18725022 The Feminism of Data Privacy and Protection in Africa
Authors: Olayinka Adeniyi, Melissa Omino
Abstract:
The field of data privacy and data protection in Africa is still an evolving area, with many African countries yet to enact legislation on the subject. While African Governments are bringing their legislation to speed in this field, how patriarchy pervades every sector of African thought and manifests in society needs to be considered. Moreover, the laws enacted ought to be inclusive, especially towards women. This, in a nutshell, is the essence of data feminism. Data feminism is a new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Feminising data privacy and protection will involve thinking women, considering women in the issues of data privacy and protection, particularly in legislation, as is the case in this paper. The line of thought of women inclusion is not uncommon when even international and regional human rights specific for women only came long after the general human rights. The consideration is that these should have been inserted or rather included in the original general instruments in the first instance. Since legislation on data privacy is coming in this century, having seen the rights and shortcomings of earlier instruments, then the cue should be taken to ensure inclusive wholistic legislation for data privacy and protection in the first instance. Data feminism is arguably an area that has been scantily researched, albeit a needful one. With the spate of increase in the violence against women spiraling in the cyber world, compounding the issue of COVID-19 and the needful response of governments, and the effect of these on women and their rights, fast forward, the research on the feminism of data privacy and protection in Africa becomes inevitable. This paper seeks to answer the questions, what is data feminism in the African context, why is it important in the issue of data privacy and protection legislation; what are the laws, if any, existing on data privacy and protection in Africa, are they women inclusive, if not, why; what are the measures put in place for the privacy and protection of women in Africa, and how can this be made possible. The paper aims to investigate the issue of data privacy and protection in Africa, the legal framework, and the protection or provision that it has for women if any. It further aims to research the importance and necessity of feminizing data privacy and protection, the effect of lack of it, the challenges or bottlenecks in attaining this feat and the possibilities of accessing data privacy and protection for African women. The paper also researches the emerging practices of data privacy and protection of women in other jurisprudences. It approaches the research through the methodology of review of papers, analysis of laws, and reports. It seeks to contribute to the existing literature in the field and is explorative in its suggestion. It suggests a draft of some clauses to make any data privacy and protection legislation women inclusive. It would be useful for policymaking, academic, and public enlightenment.Keywords: feminism, women, law, data, Africa
Procedia PDF Downloads 21325021 Evaluation of Practicality of On-Demand Bus Using Actual Taxi-Use Data through Exhaustive Simulations
Authors: Jun-ichi Ochiai, Itsuki Noda, Ryo Kanamori, Keiji Hirata, Hitoshi Matsubara, Hideyuki Nakashima
Abstract:
We conducted exhaustive simulations for data assimilation and evaluation of service quality for various setting in a new shared transportation system, called SAVS. Computational social simulation is a key technology to design recent social services like SAVS as new transportation service. One open issue in SAVS was to determine the service scale through the social simulation. Using our exhaustive simulation framework, OACIS, we did data-assimilation and evaluation of effects of SAVS based on actual tax-use data at Tajimi city, Japan. Finally, we get the conditions to realize the new service in a reasonable service quality.Keywords: on-demand bus sytem, social simulation, data assimilation, exhaustive simulation
Procedia PDF Downloads 32425020 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 29225019 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 8125018 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 19625017 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.Keywords: climate, reanalysis, renewable energy, solar radiation
Procedia PDF Downloads 21125016 The Development of Potential in Skilled Laborers in Producing Basketry
Authors: Chutikarn Sriwiboon
Abstract:
The purposes of this paper were to study the production problems of basketry in the central region and to study the development of potential in skilled labourers in producing basketry in three provinces: Suphanburi, Ayuthaya, and Aungthong. A quota sampling was utilized to get 486 respondents from 243 basketry communities that were registered with OTOP project. A focus group was also used with a connoisseurship model to study knowledge and factors that related to the development of potential in skilled labourers in producing basketry. The findings revealed that the process getting service is the major problem for customers to get service. Also, there should be more of a variety of knowledge for customers. In terms of technology, the variety of information was rated as the most important problem. In terms staff's ability, the knowledge of staff was the most important problem. For the development of potential in high skilled labours for basketry, the findings revealed that having proper tools was considered the most important factor. In terms of economy, the findings revealed that the basketry job must provide sufficient income was considered the most important factor. In terms of using natural resources, efficiency is the most important factor. In terms of mentality, integrity is the most important factor. Finally, in terms of society and culture, help in the local activities is the most important factor.Keywords: basketry, development, potential, skilled labours
Procedia PDF Downloads 29625015 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37625014 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.Keywords: contex-sensitive, CFI, binary analysis, code reuse attack
Procedia PDF Downloads 32625013 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 345