Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5899

Search results for: artificial stock market

5089 Innovating Development: An Exploratory Study of Social Enterprises in Nigeria

Authors: Akor Omachile Opaluwah

Abstract:

Entrepreneurs are heralded as a very vital force in the growth of economies. This is because they create businesses, employ people, have direct access to the local consumer, and primarily utilize local sources of raw materials, have an understanding of the immediate need of consumers, and they have the capacity to keep in motion the economy. The rise of social enterprises takes these advantages further beyond the business and economic benefits. These Social enterprises help address developmental issues in the society while maintaining a profit for their investors and shareholders. These combined roles create a unique synergy between the civil society and the market, therefore placing the social enterprise in a position where they can access directly, the benefits of the market while meeting the needs of the citizens and their environment. With such a unique position, social enterprises hold a place in the development discourse that has previously been left unexplored. This hybridisation of the functions of civil societies and the market can provide to development, practices, and benefits that have previously been only available in trace amounts. It, therefore, is imperative to understand the efficacy of social enterprises. With the discourse of social enterprises still in its early stages. This paper looks at selected social enterprise cases in Nigeria and analyses their approach and contribution to development.

Keywords: business, civil society, development, entrepreneurs, innovation, market, Nigeria, social enterprise

Procedia PDF Downloads 388
5088 Downscaling Daily Temperature with Neuroevolutionary Algorithm

Authors: Min Shi

Abstract:

State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.

Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms

Procedia PDF Downloads 349
5087 Artificial Intelligence for Cloud Computing

Authors: Sandesh Achar

Abstract:

Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things

Procedia PDF Downloads 109
5086 Suggestions to the Legislation about Medical Ethics and Ethics Review in the Age of Medical Artificial Intelligence

Authors: Xiaoyu Sun

Abstract:

In recent years, the rapid development of Artificial Intelligence (AI) has extensively promoted medicine, pharmaceutical, and other related fields. The medical research and development of artificial intelligence by scientific and commercial organizations are on the fast track. The ethics review is one of the critical procedures of registration to get the products approved and launched. However, the SOPs for ethics review is not enough to guide the healthy and rapid development of artificial intelligence in healthcare in China. Ethical Review Measures for Biomedical Research Involving Human Beings was enacted by the National Health Commission of the People's Republic of China (NHC) on December 1st, 2016. However, from a legislative design perspective, it was neither updated timely nor in line with the trends of AI international development. Therefore, it was great that NHC published a consultation paper on the updated version on March 16th, 2021. Based on the most updated laws and regulations in the States and EU, and in-depth-interviewed 11 subject matter experts in China, including lawmakers, regulators, and key members of ethics review committees, heads of Regulatory Affairs in SaMD industry, and data scientists, several suggestions were proposed on top of the updated version. Although the new version indicated that the Ethics Review Committees need to be created by National, Provincial and individual institute levels, the review authorities of different levels were not clarified. The suggestion is that the precise scope of review authorities for each level should be identified based on Risk Analysis and Management Model, such as the complicated leading technology, gene editing, should be reviewed by National Ethics Review Committees, it will be the job of individual institute Ethics Review Committees to review and approve the clinical study with less risk such as an innovative cream to treat acne. Furthermore, to standardize the research and development of artificial intelligence in healthcare in the age of AI, more clear guidance should be given to data security in the layers of data, algorithm, and application in the process of ethics review. In addition, transparency and responsibility, as two of six principles in the Rome Call for AI Ethics, could be further strengthened in the updated version. It is the shared goal among all countries to manage well and develop AI to benefit human beings. Learned from the other countries who have more learning and experience, China could be one of the most advanced countries in artificial intelligence in healthcare.

Keywords: biomedical research involving human beings, data security, ethics committees, ethical review, medical artificial intelligence

Procedia PDF Downloads 168
5085 The Strategic Engine Model: Redefined Strategy Structure, as per Market-and Resource-Based Theory Application, Tested in the Automotive Industry

Authors: Krassimir Todorov

Abstract:

The purpose of the paper is to redefine the levels of structure of corporate, business and functional strategies that were established over the past several decades, to a conceptual model, consisting of corporate, business and operations strategies, that are reinforced by functional strategies. We will propose a conceptual framework of different perspectives in the role of strategic operations as a separate strategic place and reposition the remaining functional strategies as supporting tools, existing at all three levels. The proposed model is called ‘the strategic engine’, since the mutual relationships of its ingredients are identical with main elements and working principle of the internal combustion engine. Based on theoretical essence, related to every strategic level, we will prove that the strategic engine model is useful for managers seeking to safeguard the competitive advantage of their companies. Each strategy level is researched through its basic elements. At the corporate level we examine the scope of firm’s product, the vertical and geographical coverage. At the business level, the point of interest is limited to the SWOT analysis’ basic elements. While at operations level, the key research issue relates to the scope of the following performance indicators: cost, quality, speed, flexibility and dependability. In this relationship, the paper provides a different view for the role of operations strategy within the overall strategy concept. We will prove that the theoretical essence of operations goes far beyond the scope of traditionally accepted business functions. Exploring the applications of Resource-based theory and Market-based theory within the strategic levels framework, we will prove that there is a logical consequence of the theoretical impact in corporate, business and operations strategy – at every strategic level, the validity of one theory is substituted to the level of the other. Practical application of the conceptual model is tested in automotive industry. Actually, the proposed theoretical concept is inspired by a leading global automotive group – Inchcape PLC, listed on the London Stock Exchange, and constituent of the FTSE 250 Index.

Keywords: business strategy, corporate strategy, functional strategies, operations strategy

Procedia PDF Downloads 173
5084 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
5083 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries

Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike

Abstract:

Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.

Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes

Procedia PDF Downloads 196
5082 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 103
5081 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 293
5080 The Impact of Maternity Leave Reforms: Evidence from Finland

Authors: Claudia Troccoli

Abstract:

Childbearing constitutes one of the key factors affecting labour market differences between men and women, accounting for almost a quarter of the gender wage gap. Family leave policies, such as maternity, paternity, and parental leave, represent potential key policy tools to address these inequalities, as they can promote mothers' job continuity and career progression. This paper analyses four major reforms implemented in Finland between the 1960s and the early 1980s. It studies the effects of these maternity and parental leave extensions on mothers' short- and long-run labour market outcomes. Eligibility to longer leave was determined on the basis of the child's date of birth. Therefore, estimation of the causal effects of the reforms is possible by exploiting random variation in children's birthdates and comparing the outcomes of mothers giving birth just before and just after the reform cutoff date. Overall, the three maternity leave reforms did not significantly improve mothers' earnings or employment rates. On the contrary, the estimates, although imprecise, seem to indicate negative effects on women's labour market outcomes. The extension of parental leave is, on the other hand, the only reform that improved mothers' short- and long-term labour market outcomes, both in terms of earnings and employment rate. At the same time, fathers appeared to be negatively affected by the reform. These results provide suggestive evidence that shareable parental leave might have more beneficial effects on mothers' job continuity, as it weakens the connotation of childcare as a task reserved for mothers.

Keywords: family policies, Finland, maternal labour market outcomes, maternity leave

Procedia PDF Downloads 137
5079 In Search of Zero Beta Assets: Evidence from the Sukuk Market

Authors: Andrea Paltrinieri, Alberto Dreassi, Stefano Miani, Alex Sclip

Abstract:

The financial crises caused a collapse in prices of most asset classes, raising the attention on alternative investments such as Sukuk, a smaller, fast growing but often misunderstood market. We study diversification benefits of Sukuk, their correlation with other asset classes and the effects of their inclusion in investment portfolios of institutional and retail investors, through a comprehensive comparison of their risk/return profiles during and after the financial crisis. We find a beneficial performance adjusted for the specific volatility together with a lower correlation especially during the financial crisis. The distribution of Sukuk returns is positively skewed and leptokurtic, with a risk/return profile similarly to high yield bonds. Overall, our results suggest that Sukuk present diversification opportunities, a significant volatility-adjusted performance and lower correlations especially during the financial crisis. Our findings are relevant for a number of institutional investors. Long term investors, such as life insurers would benefit from Sukuk’s protective features during financial crisis yet keeping return and growth opportunities, whereas banks would gain due to their role of placers, advisors, market makers or underwriters.

Keywords: sukuk, zero beta asset, asset allocation, sukuk market

Procedia PDF Downloads 477
5078 Volatility and Stylized Facts

Authors: Kalai Lamia, Jilani Faouzi

Abstract:

Measuring and controlling risk is one of the most attractive issues in finance. With the persistence of uncontrolled and erratic stocks movements, volatility is perceived as a barometer of daily fluctuations. An objective measure of this variable seems then needed to control risks and cover those that are considered the most important. Non-linear autoregressive modeling is our first evaluation approach. In particular, we test the presence of “persistence” of conditional variance and the presence of a degree of a leverage effect. In order to resolve for the problem of “asymmetry” in volatility, the retained specifications point to the importance of stocks reactions in response to news. Effects of shocks on volatility highlight also the need to study the “long term” behaviour of conditional variance of stocks returns and articulate the presence of long memory and dependence of time series in the long run. We note that the integrated fractional autoregressive model allows for representing time series that show long-term conditional variance thanks to fractional integration parameters. In order to stop at the dynamics that manage time series, a comparative study of the results of the different models will allow for better understanding volatility structure over the Tunisia stock market, with the aim of accurately predicting fluctuation risks.

Keywords: asymmetry volatility, clustering, stylised facts, leverage effect

Procedia PDF Downloads 299
5077 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 452
5076 Impact of Working Capital Management Strategies on Firm's Value and Profitability

Authors: Jonghae Park, Daesung Kim

Abstract:

The impact of aggressive and conservative working capital‘s strategies on the value and profitability of the firms has been evaluated by applying the panel data regression analysis. The control variables used in the regression models are natural log of firm size, sales growth, and debt. We collected a panel of 13,988 companies listed on the Korea stock market covering the period 2000-2016. The major findings of this study are as follow: 1) We find a significant negative correlation between firm profitability and the number of days inventory (INV) and days accounts payable (AP). The firm’s profitability can also be improved by reducing the number of days of inventory and days accounts payable. 2) We also find a significant positive correlation between firm profitability and the number of days accounts receivable (AR) and cash ratios (CR). In other words, the cash is associated with high corporate profitability. 3) Tobin's analysis showed that only the number of days accounts receivable (AR) and cash ratios (CR) had a significant relationship. In conclusion, companies can increase profitability by reducing INV and increasing AP, but INV and AP did not affect corporate value. In particular, it is necessary to increase CA and decrease AR in order to increase Firm’s profitability and value.

Keywords: working capital, working capital management, firm value, profitability

Procedia PDF Downloads 189
5075 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement

Authors: Farah Kanani

Abstract:

Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.

Keywords: circularity, used motor oil, re-refining, systems expansion

Procedia PDF Downloads 31
5074 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example

Authors: Ziwei Huang

Abstract:

In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.

Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory

Procedia PDF Downloads 96
5073 Examining the Market Challenges That Constrain the Proper Sales of Farming Produces Amongst the Small-Scale Farms

Authors: Simiso Fisokuhle Nyandeni

Abstract:

Climate change has turned out to be a pandemic that has drawn the attention of many countries’ households around the globe, especially those whose livelihood and economic status depend on agricultural productivity. Hence, the agricultural sector is regarded as the sector that is most dependent on climate conditions for its productivity/harvest, yet in recent years this sector has been experiencing drought. However, adaptation seems to be a tool that every farmer looks upon as a solution to their challenges as their productivity keeps on being vulnerable to climate effects. Thus, exposure/access to the market seems to be a major challenge that faces especially small-scale farmers. We, therefore, examine the small-scale farmers’ constraints or challenges towards getting access to the market for them to get proper sales of their farming products. As a result, the adaptation capacity of every farm household varies on the financial status.

Keywords: climate change, small-scale farming, agriculture sector, adaptation

Procedia PDF Downloads 85
5072 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 545
5071 The Effect of Information Technology on the Quality of Accounting Information

Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Hamid Golnari

Abstract:

This study aimed to investigate the impact of information technology on the quality of accounting information was made in 2014. A survey of 425 executives of listed companies in Tehran Stock Exchange, using the Cochran formula simple random sampling method, 84 managers of these companies as the sample size was considered. Methods of data collection based on questionnaire information technology some of the questions of the impact of information technology was standardized questionnaires and the questions were designed according to existing components. After the distribution and collection of questionnaires, data analysis and hypothesis testing using structural equation modeling Smart PLS2 and software measurement model and the structure was conducted in two parts. In the first part of the questionnaire technical characteristics including reliability, validity, convergent and divergent validity for PLS has been checked and in the second part, application no significant coefficients were used to examine the research hypotheses. The results showed that IT and its dimensions (timeliness, relevance, accuracy, adequacy, and the actual transfer rate) affect the quality of accounting information of listed companies in Tehran Stock Exchange influence.

Keywords: information technology, information quality, accounting, transfer speed

Procedia PDF Downloads 277
5070 Customer Service Marketing Mix: A Survey of Small Business around Campus, Suan Sunandha Rajabhat University

Authors: Chonlada Choovanichchanon

Abstract:

This research paper was aimed to investigate a relationship between the customer service marketing mix and the level of customers’ satisfaction from purchasing goods and service from small business around campus, Suan Sunandha Rajabhat University, Bangkok, Thailand. Based on the survey of 200 customers who frequently purchased goods and service around campus, the level of satisfaction for each factor of marketing mix was reached. An accidental random sampling was applied by using questionnaire in collecting the data. The findings revealed that the means values can help to rank these variables from high to low mean as follows: 1) forms and system of service, 2) physical environment of service center, 3) service from staff and employee, 4) product quality and service, 5) market channel and distribution, 6) market price, and 7) market promotion and distribution.

Keywords: service marketing mix, satisfaction, small business, survey

Procedia PDF Downloads 494
5069 Opportunities and Challenges for Decarbonizing Steel Production by Creating Markets for ‘Green Steel’ Products

Authors: Hasan Muslemani, Xi Liang, Kathi Kaesehage, Francisco Ascui, Jeffrey Wilson

Abstract:

The creation of a market for lower-carbon steel products, here called ‘green steel’, has been identified as an important means to support the introduction of breakthrough emission reduction technologies into the steel sector. However, the definition of what ‘green’ entails in the context of steel production, the implications on the competitiveness of green steel products in local and international markets, and the necessary market mechanisms to support their successful market penetration remain poorly explored. This paper addresses this gap by holding semi-structured interviews with international sustainability experts and commercial managers from leading steel trade associations, research institutes and steelmakers. Our findings show that there is an urgent need to establish a set of standards to define what ‘greenness’ means in the steelmaking context; standards that avoid market disruptions, unintended consequences, and opportunities for greenwashing. We also highlight that the introduction of green steel products will have implications on product competitiveness on three different levels: 1) between primary and secondary steelmaking routes, 2) with traditional, lesser green steel, and 3) with other substitutable materials (e.g. cement and plastics). This paper emphasises the need for steelmakers to adopt a transitional approach in deploying different low-carbon technologies, based on their stage of technological maturity, applicability in certain country contexts, capacity to reduce emissions over time, and the ability of the investment community to support their deployment. We further identify market mechanisms to support green steel production, including carbon border adjustments and public procurement, highlighting a need for implementing a combination of complementary policies to ensure the products’ roll-out. The study further shows that the auto industry is a likely candidate for green steel consumption, where a market would be supported by price premiums paid by willing consumers, such as those of high-end luxury vehicles.

Keywords: green steel, decarbonisation, business model innovation, market analysis

Procedia PDF Downloads 133
5068 The Moderation Effect of Financial Distress on the Relationship Between Market Power and Earnings Management of Firms

Authors: Shazia Ali, Yves Mard, Éric Severin

Abstract:

To the best of our knowledge, this is the first study to have analyzed the impact of a) firm-specific product-market power and b) industry competition on earnings management behavior of European firms in distress versus healthy years while controlling for firm-level characteristics. We predicted a significant relationship between firms’ product market power and earnings management tools and their trade-off under the moderation effect of financial distress. We found that the firm-level market power hereinafter referred to as MP (proxied by the industry-adjusted Lerner Index) is positively associated with both real and accrual earnings management. However, MP is associated with a higher level of real earnings management compared to accrual earnings management in distress years compared to healthy years. On the other hand, industry product market power (representing low competition and proxied by the inverse of the total number of firms in an industry hereinafter referred to as NUMB) and firms product market power (proxied by firm market share hereinafter referred to as MS) are associated with lower inflationary accruals and higher deflationary accruals respectively. On the other hand, they are found to be linked with higher real earnings management in distress versus healthy years. When we divided the sample into small and big firms based on their respective industry-year median total assets, we found that all three measures of industry competition (Industry Median Lerner Index (hereinafter referred to as IMLI), NUMB, and Herfindahl–Hirschman Index (hereinafter referred to as HHI) indicate that small firms in low-competitive industries in financial distress are more likely to inflate their earnings through discretionary accruals. While big firms in this situation are more likely to lower the use of both inflationary and deflationary discretionary accruals as indicated by IMLI and HHI and trade-off accruals earnings management for real earnings management as indicated by NUMB. Moreover, IMLI and HHI did not show any interesting results when we divided the sample based on the firm Lerner Index/Market Power. However, the distressed firms with high market power (MP>industry median) are found to engage in income-decreasing discretionary accruals in low-competitive industries (high NUMB). Whereas firms with low market power in the same industry use downward discretionary accruals but inflate income using real activities (abnCFO). Our findings are robust across alternate measures of discretionary accruals and financial distress, such as the Altman Z-Score. The finding of the study is valuable for accounting standard setters, competition authorities, policymakers, and investors alike to help in informed decision-making.

Keywords: financial distress, earnings management, market competition

Procedia PDF Downloads 121
5067 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 395
5066 Factors Influencing the Voluntary Disclosure of Vietnamese Listed Companies

Authors: Pham Duc Hieu, Do Thi Huong Lan

Abstract:

The aim of this paper is to investigate the factors affecting the extent of voluntary disclosure by examining the annual reports of 205 industrial and manufacturing companies listing on Ho Chi Minh Stock Exchange (HSX) and Hanoi Stock Exchange (HNX) for the year end of 2012. Those factors include company size, profitability, leverage, state ownership, managerial ownership, and foreign ownership, board independence, role duality and type of external auditors. Evidence from this study suggests two main findings. (1) Companies with high foreign ownership have a high level of voluntary disclosure. (2) The company size is an important factor related to the increased level of voluntary disclosure in annual reports made by Vietnamese listed companies. The larger the company, the higher the information is disclosed. However, no significant associations are found between profitability, leverage, state ownership, managerial ownership, board independence, role duality and type of external auditors as hypothesized in this study.

Keywords: voluntary disclosure, Vietnamese listed companies, voluntary, duality

Procedia PDF Downloads 410
5065 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network

Authors: Prateeksha Mahamallik, Anjali Pal

Abstract:

In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.

Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology

Procedia PDF Downloads 254
5064 Identifying Business Opportunities Based on Patent and Trademark Portfolios: a Technology-Based Service Industry Case

Authors: Mingook Lee, Sungjoo Lee

Abstract:

As technology-based service industries grow drastically worldwide; companies are recognizing the importance of market preoccupancy and have made an effort to capture a large market to gain the upper hand. To this end, a focus on patents can be used to determine the properties of a technology, as well as to capture advantages in technical skills, in comparison with the firm’s competitors. However, technology-based services largely depend not only on their technological value but also their economic value, due to the recognized worth that is passed to a plurality of users. Thus, it is important to determine whether there are any competitors in the target areas and what services they provide in any field. Despite this importance, little effort has been made to systematically benchmark competitors in order to identify business opportunities. Thus, this study aims to not only identify each position of technology-centered service companies in complex market dynamics, but also to discover new business opportunities. For this, we try to consider both technology and market environments simultaneously by utilizing patent data as a representative proxy for technology and trademark dates as an index for a firm’s target goods and services. Theoretically, this is one of the earliest attempts to combine patent data and trademark data to analyze corporate strategies. In practice, the research results are expected to be used as a decision criterion to diagnose the economic value that companies can obtain by entering the market, as well as the technological value to be passed onto their customers. Thus, the proposed approach can be useful to support effective technology and business strategies in a firm.

Keywords: business opportunity, patent, Portfolio analysis, trademark

Procedia PDF Downloads 294
5063 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation

Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady

Abstract:

Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.

Keywords: distribution factors, power system, sensitivity factors, electricity market

Procedia PDF Downloads 473
5062 Assessment of Marketing and Financial Activities of Night Markets in the Nigerian Economy

Authors: Adedeji Tejumola Olugboja

Abstract:

Night markets are physical locations in residential neighbourhoods where market parties interact. It is a kind of market where marketing activities commence by 6pm until after midnight. The problem of the study is to assess marketing activities in the night markets. Specific objectives for this study include determining volume of business activities, numbers of market parties etc in the selected night markets. The purposive sampling technique is adopted for this study and the four night markets in the area of study are selected as sample: Aggregate of 173 retailers and an average of 2583 consumers daily operate in these night markets. The use of tables, simple percentage and descriptive statistics were employed for data analysis and presentation. Findings revealed volume of marketing activities, sales per night, profit per night and savings per day in each of these night markets. Government should erect street lights and repair damaged ones in these night markets to make night markets more lucrative.

Keywords: marketing activities, night markets, Nigerian economy

Procedia PDF Downloads 218
5061 Evaluation of Organizational Culture and Its Effects on Innovation in the IT Sector: A Case Study from UAE

Authors: Amir M. Shikhli, Refaat H. Abdel-Razek, Salaheddine Bendak

Abstract:

Innovation is considered to be one of the key factors that influence long-term success of any company. The problem of many organizations in developing countries is trying to implement innovation without a strong basis within the organizational culture to support it. The objective of this study is to assess the effects of organizational culture on innovation in one of the biggest information technology organizations in UAE, Injazat Data System. First, an Organizational Culture Assessment Instrument (OCAI) was used as a survey and Competing Value Framework as a model to analyze the existing culture within the organization and determine its characteristics. Following that, a modified version of the Community Innovation Survey (CIS) was used to determine innovation types introduced by the organization. Then multiple linear regression analysis was used to find out the effects of existing organizational culture on innovation. Results show that existing organizational culture is composed of a combination of Hierarchy (29.4%), Clan (25.8%), Market (24.9%) and Adhocracy (19.9%). Results of the second survey show that the organization focuses on organizational innovation (26.8%) followed by market and product innovations (25.6%) and finally process innovation (22.0%). Regression analysis results reveal that for each innovation type there is a recommended combination of the four culture types. For product innovation, the combination is 47.4% Clan, 17.9% Adhocracy, 1.0% Market and 33.3% Hierarchy; for process innovation it is 19.7% Clan, 45.2% Adhocracy, 32.0% Market and 3.1% Hierarchy; for organizational innovation the combination is 5.4% Clan, 32.7% Adhocracy, 6.0% Market and 55.9% Hierarchy; and for market innovation it is 25.5% Clan, 42.6% Adhocracy, 32.6% Market and 8.4% Hierarchy. Based on these recommended combinations, this study suggests two ways to enhance the innovation culture in the organization. First, if the management decides on the innovation type to be enhanced, a comparison between the existing culture and the recommended combination of selected innovation types will lead to difference in percentages of each culture type. Then further analysis should show how to modify the existing culture to match the recommended combination. Second, if the innovation type is not selected, but the management wants to enhance innovation culture in the organization, the difference in percentages of each culture type will lead to finding out the recommended combination of culture types that gives the narrowest gap between existing culture and recommended combination.

Keywords: developing countries, organizational culture, innovation types, product innovation, process innovation, organizational innovation, marketing innovation

Procedia PDF Downloads 274
5060 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B

Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh

Abstract:

In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.

Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B

Procedia PDF Downloads 451