Search results for: adaptive random testing
5178 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4625177 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context
Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal
Abstract:
Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS
Procedia PDF Downloads 4705176 Assessment of Genetic Diversity among Wild Bulgarian Berries as Determined by Random Amplified Polymorphic DNA (RAPD)
Authors: Ilian Badjakov, Ivayla Dincheva, Violeta Kondakova, Rossitza Batchvarova
Abstract:
In this study, we present our initial results on the assessment of genetic diversity among wild Bulgarian berry accessions (Rubus idaeus L. Fragaria Vesca L., Vaccinium vitis-idaea L., Vaccinium myrtillus L.) using Random Amplified Polymorphic DNA (RAPDs) markers. Leaves and fruits were collected from two natural habitats - the Balkan Mountain and the Mountain of Orpheus - Rhodope Mountain. All accessions were screened for their polymorphism using five RAPD primers. The phylogenetic distances calculated from RAPD data ranged from 0.29 to 0.82 thus indicating that a high level of gene diversity is present in the selected genotypes. In order to characterize further the structure and grouping of berry accessions, a dendrogram deriving from UPGMA cluster analysis based on the genetic similarity (GS) coefficient matrix was designed. RAPD analysis provided to be efficient for discrimination of accessions within the same species with similar morphological charactersKeywords: Bulgarian wild berries, genetic diversity, RAPD, UPGMA
Procedia PDF Downloads 3105175 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle
Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj
Abstract:
This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.Keywords: autopilot, autonomous mode, flight testing, MAV, RPT
Procedia PDF Downloads 5195174 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 4675173 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark
Procedia PDF Downloads 795172 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials
Authors: Barry Hojjatie
Abstract:
Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.Keywords: ceramis, biaxial, flexure test, uniaxial
Procedia PDF Downloads 1555171 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 1635170 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows
Authors: Imen Boudali, Marwa Ragmoun
Abstract:
The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO
Procedia PDF Downloads 4115169 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images
Authors: Ki Moo Lim, Iman R. Tayibnapis
Abstract:
According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis
Procedia PDF Downloads 3295168 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)
Procedia PDF Downloads 3025167 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1895166 Adaptive Approach Towards Comprehensive Urban Development Simulation in Coastal Regions: Case Study of New Alamein City, Egypt
Authors: Nada Mohamed, Abdel Aziz Mohamed
Abstract:
Climate change in coastal areas is a global issue that can be felt on local scale and will be around for decades and centuries to come to an end; it also has critical risks on the city’s economy, communities, and the natural environment. One of these changes that cause a huge risk on coastal cities is the sea level rise (SLR). SLR is a result of scarcity and reduction in global environmental system. The main cause of climate change and global warming is the countries with high development index (HDI) as Japan and Germany while the medium and low HDI countries as Egypt does not have enough awareness and advanced tactics to adapt with this changes that destroy urban areas and cause loss in land and economy. This is why Climate Resilience is one of the UN sustainable development goals 2030, which is calling for actions to strengthen climate change resilience through mitigation and adaptation. For many reasons, adaptation has received less attention than mitigation and it is only recently that adaptation has become a focal global point of attention. This adaption can be achieved through some actions such as upgrading the use and the design of the land, adjusting business and activities of people, and increasing community understanding of climate risks. To reach the adaption goals, and we have to apply a strategic pathway to Climate Resilience, which is the Urban Bioregionalism Paradigm. Resiliency has been framed as persistence, adaptation, and transformation. Climate Resilience decision support system includes a visualization platform where ecological, social, and economic information can be viewed alongside with specific geographies that's why Urban Bioregionalism is a socio-ecological system which is defined as a paradigm that has potential to help move social attitudes toward environmental understanding and deepen human-environment connections within ecological development. The research aim is to achieve an adaptive integrated urban development model throughout the analyses of tactics and strategies that can be used to adapt urban areas and coastal communities to the challenges of climate changes especially SLR and also simulation model using advanced technological software for a coastal city corridor to elaborates the suitable strategy to apply.Keywords: climate resilience, sea level rise, SLR, coastal resilience, adaptive development simulation
Procedia PDF Downloads 1395165 A Development of a Weight-Balancing Control System Based On Android Operating System
Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong
Abstract:
This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing
Procedia PDF Downloads 4715164 Emotional Intelligence and Age in Open Distance Learning
Authors: Naila Naseer
Abstract:
Emotional Intelligence (EI) concept is not new yet unique and interesting. EI is a person’s ability to be aware of his/her own emotions and to manage, handle and communicate emotions with others effectively. The present study was conducted to assess the relationship between emotional intelligence and age of graduate level students at Allama Iqbal Open University (AIOU). Population consisted of Allama Iqbal Open University students (B.Ed 3rd Semester, Autumn 2007) from Rawalpindi and Islamabad regions. Total number of sample consisted of 469 participants was randomly drawn out by using table of random numbers. Bar-On EQ-i was administered on the participants through personal contact. The instrument was also validated through pilot study on a random sample of 50 participants (B.Ed students Spring 2006), who had completed their B.Ed degree successfully. Data was analyzed and tabulated in percentages, frequencies, mean, standard deviation, correlation, and scatter gram in SPSS (version 16.0 for windows). The results revealed that students with higher age group had scored low on the scale (Bar-On EQ-i). Moreover, the students in low age groups exhibited higher levels of EI as compared with old age students.Keywords: emotional intelligence, age level, learning, emotion-related feelings
Procedia PDF Downloads 3315163 The Impact of Inpatient New Boarding Policy on Emergency Department Overcrowding: A Discrete Event Simulation Study
Authors: Wheyming Tina Song, Chi-Hao Hong
Abstract:
In this study, we investigate the effect of a new boarding policy - short stay, on the overcrowding efficiency in emergency department (ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS) and ED retention rate (the percentage that patients stay in ED over than 48 hours in one month). Discrete event simulation (DES) is used as an analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a census of 6 months' patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts both the NEDOCS and ED retention rate when the no. of short stay beds is more than three.Keywords: emergency department (ED), common random number (CRN), national emergency department overcrowding score (NEDOCS), discrete event simulation (DES)
Procedia PDF Downloads 3485162 Autonomic Recovery Plan with Server Virtualization
Authors: S. Hameed, S. Anwer, M. Saad, M. Saady
Abstract:
For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization
Procedia PDF Downloads 1625161 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan
Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed
Abstract:
This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis
Procedia PDF Downloads 745160 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: agricultural engineering, image processing, computer vision, flower detection
Procedia PDF Downloads 3295159 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms
Authors: Nima Mahmoudi, Hamzeh Khazaei
Abstract:
Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization
Procedia PDF Downloads 1795158 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array
Procedia PDF Downloads 3855157 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3445156 Longitudinal Study of the Phenomenon of Acting White in Hungarian Elementary Schools Analysed by Fixed and Random Effects Models
Authors: Lilla Dorina Habsz, Marta Rado
Abstract:
Popularity is affected by a variety of factors in the primary school such as academic achievement and ethnicity. The main goal of our study was to analyse whether acting white exists in Hungarian elementary schools. In other words, we observed whether Roma students penalize those in-group members who obtain the high academic achievement. Furthermore, to show how popularity is influenced by changes in academic achievement in inter-ethnic relations. The empirical basis of our research was the 'competition and negative networks' longitudinal dataset, which was collected by the MTA TK 'Lendület' RECENS research group. This research followed 11 and 12-year old students for a two-year period. The survey was analysed using fixed and random effect models. Overall, we found a positive correlation between grades and popularity, but no evidence for the acting white effect. However, better grades were more positively evaluated within the majority group than within the minority group, which may further increase inequalities.Keywords: academic achievement, elementary school, ethnicity, popularity
Procedia PDF Downloads 2005155 The Study of Thai Consumer Behavior toward Buying Goods on the Internet
Authors: Pichamon Chansuchai
Abstract:
The study of Thai consumer behavior toward buying goods on the Internet is a survey research. The five-level rating scale and open-ended questionnaire are applied for this research procedure, which has more than 400 random sampling of Thai people aged between 15-40 years old. The summary findings are: The analysis of respondents profile were female 55.3% and male 44.8% , 35.3% aged between 20-30 years old, had been employed 29.5% with average income up to 11,000 baht/month 50.2% and expenditure more than 11,000 baht per month 29.3%. The internet usage behavior of respondents mostly found that objectives of the internet usage are: 1) Communication 93.3% 2) the categories of websites usage was trading 42.8% 3) The marketing mix effected to trading behavior via internet which can be analyzed in term of marketing factor as following: Product focused on product quality was the most influenced factor with average value 4.75. The cheaper price than overview market was the most effect factor to internet shopping with mean value 4.53. The average value 4.67 of the available place that could reduce spending time for shopping. The effective promotion of the buy 1 get 1 was the stimulus factor for internet shopping with mean value 4.60. For hypothesis testing, the different sex has relationship with buying decision. It presented that male and female have vary purchasing decision via internet with value of significant difference 0.05. Furthermore, the variety occupations of respondents related to the use of selected type of website. It also found that the vary of personal occupation effected to the type of website selection dissimilar with value of significant difference 0.05.Keywords: behavior, internet, consumer, goods
Procedia PDF Downloads 2495154 Metabolic and Adaptive Laboratory Evolutionary Engineering (ALE) of Saccharomyces cerevisiae for Second Generation Biofuel Production
Authors: Farnaz Yusuf, Naseem A. Gaur
Abstract:
The increase in environmental concerns, rapid depletion of fossil fuel reserves and intense interest in achieving energy security has led to a global research effort towards developing renewable sources of fuels. Second generation biofuels have attracted more attention recently as the use of lignocellulosic biomass can reduce fossil fuel dependence and is environment-friendly. Xylose is the main pentose and second most abundant sugar after glucose in lignocelluloses. Saccharomyces cerevisiae does not readily uptake and use pentose sugars. For an economically feasible biofuel production, both hexose and pentose sugars must be fermented to ethanol. Therefore, it is important to develop S. cerevisiae host platforms with more efficient xylose utilization. This work aims to construct a xylose fermenting yeast strains with engineered oxido-reductative pathway for xylose metabolism. Engineered strain was further improved by adaptive evolutionary engineering approach. The engineered strain is able to grow on xylose as sole carbon source with the maximum ethanol yield of 0.39g/g xylose and productivity of 0.139g/l/h at 96 hours. The further improvement in strain development involves over expression of pentose phosphate pathway and protein engineering of xylose reductase/xylitol dehydrogenase to change their cofactor specificity in order to reduce xylitol accumulation.Keywords: biofuel, lignocellulosic biomass, saccharomyces cerevisiae, xylose
Procedia PDF Downloads 2145153 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors
Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein
Abstract:
We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.Keywords: control, decentralized, gathering, multi-agent, simple sensors
Procedia PDF Downloads 1645152 Dynamic Amplification Factors of Some City Bridges
Authors: I. Paeglite, A. Paeglitis
Abstract:
The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.Keywords: bridge, dynamic effects, load testing, dynamic amplification factor
Procedia PDF Downloads 3835151 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material
Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan
Abstract:
The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.Keywords: infrared non-destructive, thermal insulation material, reliability, connection
Procedia PDF Downloads 3855150 Evaluation of tribological performance of aged and unaged biodiesel
Authors: Yuan-Ching Lin, Tian-Yi Huang, Ming-Jhe Hsieh
Abstract:
In this work, soybean biodiesel was blended with petroleum diesel as testing oils (B2). The tribiological performance of the B2 biodiesel before and after aging was evaluated using a reciprocating cylinder-on-flat wear test rig (Cameron-Plint TE-77) at various temperatures. The worn surface of each tested specimen was observed using a field-emission scanning electron microscope (FESEM). The compositions of the chemical films on each worn surface were determined using an energy dispersive spectrometer (EDS). The experimental results demonstrate that the tribiological behavior of the B2 was superior to that of other testing oils. Furthermore, the aging of biodiesel caused acidification, which resulted in poorer wear performance in the same experimental condition compared with others. The worn morphology of the specimen that was tested in the aged soybean biodiesel exhibited corrosion wear, reflecting low wear resistance.Keywords: biodiesel, soybean, tribological performance
Procedia PDF Downloads 4945149 [Keynote Talk]: Unlocking Transformational Resilience in the Aftermath of a Flood Disaster: A Case Study from Cumbria
Authors: Kate Crinion, Martin Haran, Stanley McGreal, David McIlhatton
Abstract:
Past research has demonstrated that disasters are continuing to escalate in frequency and magnitude worldwide, representing a key concern for the global community. Understanding and responding to the increasing risk posed by disaster events has become a key concern for disaster managers. An emerging trend within literature, acknowledges the need to move beyond a state of coping and reinstatement of the status quo, towards incremental adaptive change and transformational actions for long-term sustainable development. As such, a growing interest in research concerns the understanding of the change required to address ever increasing and unpredictable disaster events. Capturing transformational capacity and resilience, however is not without its difficulties and explains the dearth in attempts to capture this capacity. Adopting a case study approach, this research seeks to enhance an awareness of transformational resilience by identifying key components and indicators that determine the resilience of flood-affected communities within Cumbria. Grounding and testing a theoretical resilience framework within the case studies, permits the identification of how perceptions of risk influence community resilience actions. Further, it assesses how levels of social capital and connectedness impacts upon the extent of interplay between resources and capacities that drive transformational resilience. Thus, this research seeks to expand the existing body of knowledge by enhancing the awareness of resilience in post-disaster affected communities, by investigating indicators of community capacity building and resilience actions that facilitate transformational resilience during the recovery and reconstruction phase of a flood disaster.Keywords: capacity building, community, flooding, transformational resilience
Procedia PDF Downloads 289