Search results for: bank business model
11439 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt
Authors: Shereif. H. Mahmoud
Abstract:
Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)
Procedia PDF Downloads 36011438 The Cost of Non-Communicable Diseases in the European Union: A Projection towards the Future
Authors: Desiree Vandenberghe, Johan Albrecht
Abstract:
Non-communicable diseases (NCDs) are responsible for the vast majority of deaths in the European Union (EU) and represent a large share of total health care spending. A future increase in this health and financial burden is likely to be driven by population ageing, lifestyle changes and technological advances in medicine. Without adequate prevention measures, this burden can severely threaten population health and economic development. To tackle this challenge, a correct assessment of the current burden of NCDs is required, as well as a projection of potential increases of this burden. The contribution of this paper is to offer perspective on the evolution of the NCD burden towards the future and to give an indication of the potential of prevention policy. A Non-Homogenous, Semi-Markov model for the EU was constructed, which allowed for a projection of the cost burden for the four main NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes mellitus) towards 2030 and 2050. This simulation is done based on multiple baseline scenarios that vary in demand and supply factors such as health status, population structure, and technological advances. Finally, in order to assess the potential of preventive measures to curb the cost explosion of NCDs, a simulation is executed which includes increased efforts for preventive health care measures. According to the Markov model, by 2030 and 2050, total costs (direct and indirect costs) in the EU could increase by 30.1% and 44.1% respectively, compared to 2015 levels. An ambitious prevention policy framework for NCDs will be required if the EU wants to meet this challenge of rising costs. To conclude, significant cost increases due to Non-Communicable Diseases are likely to occur due to demographic and lifestyle changes. Nevertheless, an ambitious prevention program throughout the EU can aid in making this cost burden manageable for future generations.Keywords: non-communicable diseases, preventive health care, health policy, Markov model, scenario analysis
Procedia PDF Downloads 14011437 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 8011436 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 15411435 Competitive Advantage Challenges in the Apparel Manufacturing Industries of South Africa: Application of Porter’s Factor Conditions
Authors: Sipho Mbatha, Anne Mastament-Mason
Abstract:
South African manufacturing global competitiveness was ranked 22nd (out of 38 countries), dropped to 24th in 2013 and is expected to drop further to 25th by 2018. These impacts negatively on the industrialisation project of South Africa. For industrialization to be achieved through labour intensive industries like the Apparel Manufacturing Industries of South Africa (AMISA), South Africa needs to identify and respond to factors negatively impacting on the development of competitive advantage This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialisation policy were interviewed The paper points out that while AMISA have basic factor conditions necessary for competitive advantage in the clothing and textiles industries, Advance factor coordination has proven to be a challenging task for the AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response as a result of lack of advanced technologies. The use of Porter’s Factor Conditions as a tool to analyse the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyse the situation of the AMISA for the purposes of improving competitive advantage.Keywords: compliance rule, apparel manufacturing industry, factor conditions, advance skills and South African industrial policy
Procedia PDF Downloads 36211434 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 24111433 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 10311432 Across-Breed Genetic Evaluation of New Zealand Dairy Goats
Authors: Nicolas Lopez-Villalobos, Dorian J. Garrick, Hugh T. Blair
Abstract:
Many dairy goat farmers of New Zealand milk herds of mixed breed does. Simultaneous evaluation of sires and does across breed is required to select the best animals for breeding on a common basis. Across-breed estimated breeding values (EBV) and estimated producing values for 208-day lactation yields of milk (MY), fat (FY), protein (PY) and somatic cell score (SCS; LOG2(SCC) of Saanen, Nubian, Alpine, Toggenburg and crossbred dairy goats from 75 herds were estimated using a test day model. Evaluations were based on 248,734 herd-test records representing 125,374 lactations from 65,514 does sired by 930 sires over 9 generations. Averages of MY, FY and PY were 642 kg, 21.6 kg and 19.8 kg, respectively. Average SCC and SCS were 936,518 cells/ml milk and 9.12. Pure-bred Saanen does out-produced other breeds in MY, FY and PY. Average EBV for MY, FY and PY compared to a Saanen base were Nubian -98 kg, 0.1 kg and -1.2 kg; Alpine -64 kg, -1.0 kg and -1.7 kg; and Toggenburg -42 kg, -1.0 kg and -0.5 kg. First-cross heterosis estimates were 29 kg MY, 1.1 kg FY and 1.2 kg PY. Average EBV for SCS compared to a Saanen base were Nubian 0.041, Alpine -0.083 and Toggenburg 0.094. Heterosis for SCS was 0.03. Breeding values are combined with respective economic values to calculate an economic index used for ranking sires and does to reflect farm profit.Keywords: breed effects, dairy goats, milk traits, test-day model
Procedia PDF Downloads 33011431 How Cultural Tourists Perceive Authenticity in World Heritage Historic Centers: An Empirical Research
Authors: Odete Paiva, Cláudia Seabra, José Luís Abrantes, Fernanda Cravidão
Abstract:
There is a clear ‘cult of authenticity’, at least in modern Western society. So, there is a need to analyze the tourist perception of authenticity, bearing in mind the destination, its attractions, motivations, cultural distance, and contact with other tourists. Our study seeks to investigate the relationship among cultural values, image, sense of place, perception of authenticity and behavior intentions at World Heritage Historic Centers. From a theoretical perspective, few researches focus on the impact of cultural values, image and sense of place on authenticity and intentions behavior in tourists. The intention of this study is to help close this gap. A survey was applied to collect data from tourists visiting two World Heritage Historic Centers – Guimarães in Portugal and Cordoba in Spain. Data was analyzed in order to establish a structural equation model (SEM). Discussion centers on the implications of model to theory and managerial development of tourism strategies. Recommendations for destinations managers and promoters and tourist organizations administrators are addressed.Keywords: authenticity perception, behavior intentions, cultural tourism, cultural values, world heritage historic centers
Procedia PDF Downloads 31611430 Benefits of Shaping a Balance on Environmental and Economic Sustainability for Population Health
Authors: Edna Negron-Martinez
Abstract:
Our time's global challenges and trends —like those associated with climate change, demographics displacements, growing health inequalities, and increasing burden of diseases— have complex connections to the determinants of health. Information on the burden of disease causes and prevention is fundamental for public health actions, like preparedness and responses for disasters, and recovery resources after the event. For instance, there is an increasing consensus about key findings of the effects and connections of the global burden of disease, as it generates substantial healthcare costs, consumes essential resources and prevents the attainment of optimal health and well-being. The goal of this research endeavor is to promote a comprehensive understanding of the connections between social, environmental, and economic influences on health. These connections are illustrated by pulling from clearly the core curriculum of multidisciplinary areas —as urban design, energy, housing, and economy— as well as in the health system itself. A systematic review of primary and secondary data included a variety of issues as global health, natural disasters, and critical pollution impacts on people's health and the ecosystems. Environmental health is challenged by the unsustainable consumption patterns and the resulting contaminants that abound in many cities and urban settings around the world. Poverty, inadequate housing, and poor health are usually linked. The house is a primary environmental health context for any individual and especially for more vulnerable groups; such as children, older adults and those who are sick. Nevertheless, very few countries show strong decoupling of environmental degradation from economic growth, as indicated by a recent 2017 Report of the World Bank. Worth noting, the environmental fraction of the global burden of disease in a 2016 World Health Organization (WHO) report estimated that 12.6 million global deaths, accounting for 23% (95% CI: 13-34%) of all deaths were attributable to the environment. Among the environmental contaminants include heavy metals, noise pollution, light pollution, and urban sprawl. Those key findings make a call to the significance to urgently adopt in a global scale the United Nations post-2015 Sustainable Development Goals (SDGs). The SDGs address the social, environmental, and economic factors that influence health and health inequalities, advising how these sectors, in turn, benefit from a healthy population. Consequently, more actions are necessary from an inter-sectoral and systemic paradigm to enforce an integrated sustainability policy implementation aimed at the environmental, social, and economic determinants of health.Keywords: building capacity for workforce development, ecological and environmental health effects of pollution, public health education, sustainability
Procedia PDF Downloads 10711429 Identifying the Mindset of Deaf Benildean Students in Learning Anatomy and Physiology
Authors: Joanne Rieta Miranda
Abstract:
Learning anatomy and physiology among Deaf Non-Science major students is a challenge. They have this mindset that Anatomy and Physiology are difficult and very technical. In this study, nine (9) deaf students who are business majors were considered. Non-conventional teaching strategies and classroom activities were employed such as cooperative learning, virtual lab, Facebook live, big sky, blood typing, mind mapping, reflections, etc. Of all the activities; the deaf students ranked cooperative learning as the best learning activity. This is where they played doctors. They measured the pulse rate, heart rate and blood pressure of their partner classmate. In terms of mindset, 2 out of 9 students have a growth mindset with some fixed ideas while 7 have a fixed mindset with some growth ideas. All the students passed the course. Three out of nine students got a grade of 90% and above. The teacher was evaluated by the deaf students as very satisfactory with a mean score of 3.54. This means that the learner-centered practices in the classroom are manifested to a great extent.Keywords: deaf students, learning anatomy and physiology, teaching strategies, learner-entered practices
Procedia PDF Downloads 23111428 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 44511427 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 18911426 Hydrological Analysis for Urban Water Management
Authors: Ranjit Kumar Sahu, Ramakar Jha
Abstract:
Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change
Procedia PDF Downloads 42511425 Application of ECQFD for Enabling Environmentally Conscious Design
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Growing business recognizes environmental consciousness as an important concept for survival in the competitive scenario. Environmental consciousness is a critical intersection between manufacturing and product design processes with environmental issues and concerns. This article presents a project in which quality function deployment (QFD) for environment (ECQFD) has been applied to rotary switches for enabling environmentally conscious design in the early stage of product development. ECQFD is capable of handling simultaneously the environmental and traditional product quality requirements. ECQFD consists of four phases. ECQFD phases I and II are concerned with the identification of parts that are important in enhancing environmental consciousness. ECQFD phases III and IV are concerned with the evaluation of effect of design improvement on environmental quality requirements. The case study has been practically validated which indicated the receptivity of applying ECQFD in industrial scenario.Keywords: quality function deployment, environment, product design, design for environment, rotary switches
Procedia PDF Downloads 42811424 Designing Sustainable Building Based on Iranian's Windmills
Authors: Negar Sartipzadeh
Abstract:
Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.Keywords: renewable energy, sustainable building, windmill, Iranian architecture
Procedia PDF Downloads 42211423 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 11311422 Radar Charts Analysis to Compare the Level of Innovation in Mexico with Most Innovative Countries in Triple Helix Schema Economic and Human Factor Dimension
Authors: M. Peña Aguilar Juan, Valencia Luis, Pastrana Alberto, Nava Estefany, A. Martinez, M. Vivanco, A. Castañeda
Abstract:
This paper seeks to compare the innovation of Mexico from an economic and human perspective, with the seven most innovative countries according to the Global Innovation Index 2013, done by the World Intellectual Property Organization (WIPO). The above analysis suggests nine dimensions: Expenditure on R & D, intellectual property, appropriate environment to conduct business, economic stability, and triple helix for R & D, ICT Infrastructure, education, human resources and quality of life. Each dimension is represented by an indicator which is later used to construct a radial graph that compares the innovative capacity of the countries analysed. As a result, it is proposed a new indicator of innovation called The Area of Innovation. Observations are made from the results, and finally as a conclusion, those items or dimensions in which Mexico suffers lag in innovation are identify.Keywords: dimension, measure, innovation level, economy, radar chart
Procedia PDF Downloads 47211421 Application of Hydrological Engineering Centre – River Analysis System (HEC-RAS) to Estuarine Hydraulics
Authors: Julia Zimmerman, Gaurav Savant
Abstract:
This study aims to evaluate the efficacy of the U.S. Army Corp of Engineers’ River Analysis System (HEC-RAS) application to modeling the hydraulics of estuaries. HEC-RAS has been broadly used for a variety of riverine applications. However, it has not been widely applied to the study of circulation in estuaries. This report details the model development and validation of a combined 1D/2D unsteady flow hydraulic model using HEC-RAS for estuaries and they are associated with tidally influenced rivers. Two estuaries, Galveston Bay and Delaware Bay, were used as case studies. Galveston Bay, a bar-built, vertically mixed estuary, was modeled for the 2005 calendar year. Delaware Bay, a drowned river valley estuary, was modeled from October 22, 2019, to November 5, 2019. Water surface elevation was used to validate both models by comparing simulation results to NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) gauge data. Simulations were run using the Diffusion Wave Equations (DW), the Shallow Water Equations, Eulerian-Lagrangian Method (SWE-ELM), and the Shallow Water Equations Eulerian Method (SWE-EM) and compared for both accuracy and computational resources required. In general, the Diffusion Wave Equations results were found to be comparable to the two Shallow Water equations sets while requiring less computational power. The 1D/2D combined approach was valid for study areas within the 2D flow area, with the 1D flow serving mainly as an inflow boundary condition. Within the Delaware Bay estuary, the HEC-RAS DW model ran in 22 minutes and had an average R² value of 0.94 within the 2-D mesh. The Galveston Bay HEC-RAS DW ran in 6 hours and 47 minutes and had an average R² value of 0.83 within the 2-D mesh. The longer run time and lower R² for Galveston Bay can be attributed to the increased length of the time frame modeled and the greater complexity of the estuarine system. The models did not accurately capture tidal effects within the 1D flow area.Keywords: Delaware bay, estuarine hydraulics, Galveston bay, HEC-RAS, one-dimensional modeling, two-dimensional modeling
Procedia PDF Downloads 19911420 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 8311419 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 13611418 The Influence of Website Quality on Customer E-Satisfaction in Low Cost Airline
Authors: Zainab Khalifah, Wong Chiet Bing, Noor Hazarina Hashim
Abstract:
The evolution of customer behavior in purchasing products or services through the Internet leads to airline companies engaging in the e-ticketing process in order to maintain their business. A well-designed website is vitally significant for the airline companies to provide effective communication, support, and competitive advantage. This study was conducted to identify the dimensions of website quality for low cost airline and to investigate the relationship between the website quality and customer e-satisfaction at low cost airline. A total of 381 responses were conveniently collected among local passengers at Low Cost Carrier Terminal, Kuala Lumpur via questionnaire distribution. This study found that the five determinant factors of website quality for AirAsia were Information Content, Navigation, Responsiveness, Personalization, and Security and Privacy. The results of this study revealed that there is a positive relationship between the five dimensions of website quality and customer e-satisfaction, and also information content was the most significant contributor to customer e-satisfaction.Keywords: website quality, customer e-satisfaction, low cost airline, e-ticketing
Procedia PDF Downloads 42311417 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model
Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf
Abstract:
Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV
Procedia PDF Downloads 12711416 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent
Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi
Abstract:
An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration
Procedia PDF Downloads 47011415 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System
Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski
Abstract:
A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater
Procedia PDF Downloads 8711414 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 12411413 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy
Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip
Abstract:
Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.Keywords: radiation, tumour repopulation, squamous cell carcinoma, stem cell
Procedia PDF Downloads 26811412 Thematic Review of Literature on Sustainability and Small and Medium-Sized Enterprises
Authors: Kumar Vijayendra, Kumar Raghvendra, Shivanshi Bhadouria
Abstract:
Using a thematic qualitative analysis, this study aims to identify dominant themes previously highlighted by various systematic literature reviews and studies in the field of sustainability and small and medium-sized enterprises (SMEs). The studies picked for this paper range from the nascent stages of the emergence of the concept of corporate sustainability in business to present-day targeted studies on SMEs. This study has attempted to highlight the recurring, emerging, and neglected themes in the literature and concludes with some key findings: 1) the research on sustainability and SMEs remains focused on generic rather than targeted studies; 2) sustainability frameworks specifically designed for SMEs remain under-researched as opposed to large firms, 3) there is a requirement to look more at the SMEs in the service sector. This paper also highlights other dominant themes in literature and, finally, offers suggestions for areas of future research.Keywords: sustainability, small and medium-sized enterprises, literature review, sustainable development
Procedia PDF Downloads 8311411 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.Keywords: transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment
Procedia PDF Downloads 16911410 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.Keywords: heterojunction, modeling, simulation, thin film, Tcad Silvaco
Procedia PDF Downloads 370