Search results for: emergency medical services information system (EMSIS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30187

Search results for: emergency medical services information system (EMSIS)

22057 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory

Procedia PDF Downloads 386
22056 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm

Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj

Abstract:

In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.

Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation

Procedia PDF Downloads 436
22055 Finite Element Analysis of Mini-Plate Stabilization of Mandible Fracture

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented investigation is to recognize the possible mechanical issues of mini-plate connection used to treat mandible fractures and to check the impact of different factors for the stresses and displacements within the bone-stabilizer system. The mini-plate osteosynthesis technique is a common type of internal fixation using metal plates connected to the fractured bone parts by a set of screws. The selected two types of plate application methodology used by maxillofacial surgeons were investigated in the work. Those patterns differ in location and number of plates. The bone geometry was modeled on the base of computed tomography scans of hospitalized patient done just after mini-plate application. The solid volume geometry consisting of cortical and cancellous bone was created based on gained cloud of points. Temporomandibular joint and muscle system were simulated to imitate the real masticatory system behavior. Finite elements mesh and analysis were performed by ANSYS software. To simulate realistic connection behavior nonlinear contact conditions were used between the connecting elements and bones. The influence of the initial compression of the connected bone parts or the gap between them was analyzed. Nonlinear material properties of the bone tissues and elastic-plastic model of titanium alloy were used. The three cases of loading assuming the force of magnitude of 100N acting on the left molars, the right molars and the incisors were investigated. Stress distribution within connecting plate shows that the compression of the bone parts in the connection results in high stress concentration in the plate and the screws, however the maximum stress levels do not exceed material (titanium) yield limit. There are no significant differences between negative offset (gap) and no-offset conditions. The location of the external force influences the magnitude of stresses around both the plate and bone parts. Two-plate system gives generally lower von Misses stress under the same loading than the one-plating approach. Von Mises stress distribution within the cortical bone shows reduction of high stress field for the cases without the compression (neutral initial contact). For the initial prestressing there is a visible significant stress increase around the fixing holes at the bottom mini-plate due to the assembly stress. The local stress concentration may be the reason of bone destruction in those regions. The performed calculations prove that the bone-mini-plate system is able to properly stabilize the fractured mandible bone. There is visible strong dependency between the mini-plate location and stress distribution within the stabilizer structure and the surrounding bone tissue. The results (stresses within the bone tissues and within the devices, relative displacements of the bone parts at the interface) corresponding to different models of the connection provide a basis for the mechanical optimization of the mini-plate connections. The results of the performed numerical simulations were compared to clinical observation. They provide information helpful for better understanding of the load transfer in the mandible with the stabilizer and for improving stabilization techniques.

Keywords: finite element modeling, mandible fracture, mini-plate connection, osteosynthesis

Procedia PDF Downloads 251
22054 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 252
22053 Prayer Therapy in a Case of Acute Myeloid Leukemia: The Good, the Bad and the Ugly

Authors: Rubai M. Ochieng

Abstract:

Cancer, which accounts for 7 percent of deaths per year in Kenya, is the third highest cause of death after infectious and cardiovascular diseases. Awareness Campaigns have tended to focus on leading cancers including breast and cervical for women as well as prostrate and Esophageal for men. Consequently, less common cancers such as Acute Myeloid Leukemia (AML) are rarely properly understood by the general population and a section of the medical fraternity. Diagnoses of AML in patients who may not have heard about it sometimes results in shock, denial and confusion not just to the diagnosed, but also to their family and friends. The diagnosed and caregivers are bound to receive a lot of contradicting information about prognosis, care and treatment of AML. This information, which often comes from diverse sources including doctors, friends, internet and social media platforms, causes further confusion and panic. The situation is handled differently by different people. Religious people sometimes resort to prayer. This paper, written from the perspective of a care giver, is based on data collected from a case of Acute Myeloid Leukemia diagnosed in a 32 year old male who lost his life within six weeks of diagnosis. The sample constitutes of 16 people who participated in prayers. Out of this total, 5 were males including the diagnosed and 11 were females. All the 16 were Christians of protestant orientation including Anglicans, Quakers and Church of God members. Data was collected by the researcher herself through participant of observation. Findings discuss how the 16 participants prayed individually at different times, together in an overnight prayer meeting and every morning through a group social media platform. They shared songs and words of encouragement from the bible. The group prayed for healing, peace and strength to the diagnosed and family, financial breakthrough and doctors’ work and decisions, among other challenges that came with the situation. The paper reveals the immense benefits of prayer to the diagnosed and his close relatives and friends. They include acceptance of the condition and a positive attitude in handling the challenges that arose from the disease and treatment processes. The challenges arising from the prayer approach of handling the situation are also discussed. The paper concludes that prayer as therapy goes a long way in cancer management.

Keywords: acute myeloid leukemia, Kenya, participant observation, prayer

Procedia PDF Downloads 166
22052 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 149
22051 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method

Procedia PDF Downloads 206
22050 Working at the Interface of Health and Criminal Justice: An Interpretative Phenomenological Analysis Exploration of the Experiences of Liaison and Diversion Nurses – Emerging Findings

Authors: Sithandazile Masuku

Abstract:

Introduction: Public health approaches to offender mental health are driven by international policies and frameworks in response to the disproportionately large representation of people with mental health problems within the offender pathway compared to the general population. Public health service innovations include mental health courts in the US, restorative models in Singapore and, liaison and diversion services in Australia, the UK, and some other European countries. Mental health nurses are at the forefront of offender health service innovations. In the U.K. context, police custody has been identified as an early point within the offender pathway where nurses can improve outcomes by offering assessments and share information with criminal justice partners. This scope of nursing practice has introduced challenges related to skills and support required for nurses working at the interface of health and the criminal justice system. Parallel literature exploring experiences of nurses working in forensic settings suggests the presence of compassion fatigue, burnout and vicarious trauma that may impede risk harm to the nurses in these settings. Published research explores mainly service-level outcomes including monitoring of figures indicative of a reduction in offending behavior. There is minimal research exploring the experiences of liaison and diversion nurses who are situated away from a supportive clinical environment and engaged in complex autonomous decision-making. Aim: This paper will share qualitative findings (in progress) from a PhD study that aims to explore the experiences of liaison and diversion nurses in one service in the U.K. Methodology: This is a qualitative interview study conducted using an Interpretative Phenomenological Analysis to gain an in-depth analysis of lived experiences. Methods: A purposive sampling technique was used to recruit n=8 mental health nurses registered with the UK professional body, Nursing and Midwifery Council, from one UK Liaison and Diversion service. All participants were interviewed online via video call using semi-structured interview topic guide. Data were recorded and transcribed verbatim. Data were analysed using the seven steps of the Interpretative Phenomenological Analysis data analysis method. Emerging Findings Analysis to date has identified pertinent themes: • Difficulties of meaning-making for nurses because of the complexity of their boundary spanning role. • Emotional burden experienced in a highly emotive and fast-changing environment. • Stress and difficulties with role identity impacting on individual nurses’ ability to be resilient. • Challenges to wellbeing related to a sense of isolation when making complex decisions. Conclusion Emerging findings have highlighted the lived experiences of nurses working in liaison and diversion as challenging. The nature of the custody environment has an impact on role identity and decision making. Nurses left feeling isolated and unsupported are less resilient and may go on to experience compassion fatigue. The findings from this study thus far point to a need to connect nurses working in these boundary spanning roles with a supportive infrastructure where the complexity of their role is acknowledged, and they can be connected with a health agenda. In doing this, the nurses would be protected from harm and the likelihood of sustained positive outcomes for service users is optimised.

Keywords: liaison and diversion, nurse experiences, offender health, staff wellbeing

Procedia PDF Downloads 141
22049 The Relationship between the Feeling of Distributive Justice and National Identity of the Youth

Authors: Leila Batmany

Abstract:

This research studies the relationship between the feeling of distributive justice and national identity of the youth. The present analysis intends to experimentally investigate the various dimensions of the justice feeling and its effect on the national identity components. The study has taken justice into consideration from four different points of view on the basis of availability of valuable social sources such as power, wealth, knowledge and status in the political, economic, and cultural and status justice respectively. Furthermore, the national identity has been considered as the feeling of honour, attachment and commitment towards national society and its seven components i.e. history, language, culture, political system, religion, geographical territory and society. The 'field study' has been used as the method for the research with the individual as unit, taking 368 young between the age of 18 and 29 living in Tehran, chosen randomly according to Cochran formula. The individual samples have been randomly chosen among five districts in north, south, west, east, and centre of Tehran, based on the multistage cluster sampling. The data collection has been performed with the use of questionnaire and interview. The most important results are as follows: i) The feeling of economic justice is the weakest one among the youth. ii) The strongest and the weakest dimensions of the national identity are, respectively, the historical and the social dimension. iii) There is a positive and meaningful relationship between the feeling political and statues justice and then national identity, whereas no meaningful relationship exists between the economic and cultural justice and the national identity. iv) There is a positive and meaningful relationship between the feeling of justice in all dimensions and legitimacy of the political system. There is also such a relationship between the legitimacy of the political system and national identity. v) Generally, there is a positive and meaningful relationship between the feeling of distributive justice and national identity among the youth. vi) It is through the legitimacy of the political system that justice feeling can have an influence on the national identity.

Keywords: distributive justice, national identity, legitimacy of political system, Cochran formula, multistage cluster sampling

Procedia PDF Downloads 138
22048 Sample Hospital Buildings as Modern Health Facilities in Early Republican Turkey

Authors: Mehmet Sener, Emre Kishali

Abstract:

The establishment of republic brought radical changes related to the modernization of life in early republican Turkey considering the revolutions in socio-economical, cultural and political aspects. These changes also had many influences on the formation of city planning and architectural medium that the arrangements related with health facility production had an important place amongst them. While the health services were witnessing great transformations with all its sides, socio-cultural and architectural framework of these facilities necessitated the adaption of new conceptual approaches which led to the construction new hospital buildings by the republican state with a name ‘Sample Hospital’. In this period, the state constructed sample hospitals in some cities (Adana, Ankara, Erzurum, İstanbul, Konya, Sivas and Trabzon) for the aim of being a good example for further hospitals sheltering all the characteristics of a contemporary health complex for that day. In this study, these six hospitals will firstly be elucidated considering their historical evaluations and current situations. Then, being one of the most significant modern heritages of republican history, the ways to provide the interrelationship of these complexes with the rapidly evolving current world will be discussed by proposing solutions or approaches coming from the fields of city planning, architectural preservation, engineering and architectural history together with an awareness of the socio-economic conditions, health services and architectural medium of Turkey. These hospitals are complexes composed of building ensembles which have functional relationships with each other. So, some strategies will be proposed for the preservation, renovation, and refurbishment of these complexes with an awareness of the possibility of the conflict between conservation practices and today’s health facility standards. Accordingly, the addition or removal of some elements in the complex or the suggestion of some architectural changes for the modernization of these health facilities will be investigated considering the requirements of the contemporary architectural design of health facilities. Since these hospitals are highly complex structures and have vastly changing design and construction standards, they cannot be used without adopting necessary architectural and technological interventions. So, the adaptive re-use of these buildings instead of demolition or the preservation of their overall characteristics becomes inevitable for the sustaining of these health facility heritages in Turkey. In this context, a multidisciplinary analysis will be made in this study on ‘Sample Hospital’ concept and buildings existing in Turkish modern architectural history within the framework of the adaptive reuse of these health complexes.

Keywords: adaptive re-use, conservation, early republican Turkey, sample hospital

Procedia PDF Downloads 245
22047 Crash Statistics Comparison for Riyadh, Eastern Province, and Qaseem for 2016 and 2017

Authors: Hassan M. Al-Ahmadi

Abstract:

The fatality index (deaths/100 K population) due to road traffic accidents in the Kingdom of Saudi Arabia (KSA) is over 25, according to the World Health Organization Statistics (WHO) statistics, which is much higher than in the neighboring Arab regions. The KSA has implemented measures to mitigate traffic accidents by enforcing road safety regulations. As a result, there has been a slight decline in the frequency of road traffic accidents within the Kingdom. This study was based on the variations in the accidents for three provinces of KSA, i.e., Riyadh, Eastern Province (EP), & Qaseem, for 2016 and 2017 using ANOVA method. Data appropriateness for the ANOVA method was confirmed by the normality and the randomness of residuals. Additionally, the half-normal plot was used to identify the significant terms for the ANOVA analysis. The analysis revealed that the accidents in the EP were significantly higher than in the other two provinces during the analysis period. The monthly variation showed a spike in the accidents from month 7th to 9th month in the EP region and a slight drop in the accidents in the Qaseem and the Riyadh region during the same period, which was attributed to the increased leisure travels from the other regions to the EP. Furthermore, most of the accidents were found to occur in the age group of 18+ and 30+, and also the major reduction of accidents in 2017 as compared to 2016 was found to have occurred in the same group. These findings can be beneficial for developing strategies to further reduce the number of accidents.

Keywords: fatality index, emergency, road traffic accident, safety, leisure travels

Procedia PDF Downloads 40
22046 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System

Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar

Abstract:

The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.

Keywords: genetic algorithm, energy, exergy, PVT module, optimization

Procedia PDF Downloads 608
22045 The Effect of Peer Support on Adaptation to University Life in First Year Students of the University

Authors: Bilgen Ozluk, Ayfer Karaaslan

Abstract:

Introduction: Adaptation to university life is a difficult process for students. In peer support, students are expected to help other students or sometimes adults using their helping skills. Therefore, it is expected that peer support will have significant effect on students’ adaptation to university life. Aim: This study was conducted with the aim of determining the effect of peer support on adaptation to university life in the first year students of the faculty of health sciences. Methods: The population consists of 340 first year university students receiving education in the departments of nursing, health management, social services, nutrition and dietetics, physiotherapy and rehabilitation at an university located in the province of Konya. The sample of the study consisted of 274 students who voluntarily participated in the study. The data were collected between the dates 23 May 2016 and 3 June 2016. The data were collected using the socio-demographic information, the peer support scale and the university life adaptation scale. Ethical approvals for the study and permission from the university were taken. Numbers, percentages, averages, one-Way ANOVA, pearson correlation analysis and regression analysis have been used in assessing the data. Findings: When the problems most frequently encountered by students just starting the university were ordered, problems regarding their classes took the first place by 41.6%, socio-cultural problems took the second place by 38.7%, and economic problems took the third place by 37.6%. The mean total score of the Adaptation to University Life Scale was found to be 216.78±32.15. Considering that the lowest and highest scores that can be gained from the scale are 132 and 289 respectively, it was found that the adaptation to university life levels of the students were higher than the average. The mean adaptation to university life score of the nursing students was higher than those of the students of other departments. The mean score of ‘the Peer Support Scale’ was found to be 47.24±10.27. Considering that the lowest and highest scores that can be gained from the scale are 17 and 68 respectively, it was found that the peer support levels of the students were higher than the average. As a result of the regression analysis, it was found that 20% of the total variance regarding adaptation to university life was explained by peer support. Conclution: Receiving the support peer groups becomes highly important in the university adaptation process of first-year students. Peer support will create the means for easier completion of this difficult transition process.

Keywords: adaptation to university life, first years, peer support, university student

Procedia PDF Downloads 218
22044 Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System

Authors: John Gaber, Youssef Ahmed, Hossam A.Gabbar, Jing Ren

Abstract:

Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion.

Keywords: EEG, power plant operator, psychology, task analysis

Procedia PDF Downloads 104
22043 Evaluate Existing Mental Health Intervention Programs Tailored for International Students in China

Authors: Nargiza Nuralieva

Abstract:

This meta-analysis investigates the effectiveness of mental health interventions tailored for international students in China, with a specific focus on Uzbek students and Silk Road scholarship recipients. The comprehensive literature review synthesizes existing studies, papers, and reports, evaluating the outcomes, limitations, and cultural considerations of these programs. Data selection targets mental health programs for international students, honing in on a subset analysis related to Uzbek students and Silk Road scholarship recipients. The analysis encompasses diverse outcome measures, such as reported stress levels, utilization rates of mental health services, academic performance, and more. Results reveal a consistent and statistically significant reduction in reported stress levels, emphasizing the positive impact of these interventions. Utilization rates of mental health services witness a significant increase, highlighting the accessibility and effectiveness of support. Retention rates show marked improvement, though academic performance yields mixed findings, prompting nuanced exploration. Psychological well-being, quality of life, and overall well-being exhibit substantial enhancements, aligning with the overarching goal of holistic student development. Positive outcomes are observed in increased help-seeking behavior, positive correlations with social support, and significant reductions in anxiety levels. Cultural adaptation and satisfaction with interventions both indicate positive outcomes, underscoring the effectiveness of culturally sensitive mental health support. The findings emphasize the importance of tailored mental health interventions for international students, providing novel insights into the specific needs of Uzbek students and Silk Road scholarship recipients. This research contributes to a nuanced understanding of the multifaceted impact of mental health programs on diverse student populations, offering valuable implications for the design and refinement of future interventions. As educational institutions continue to globalize, addressing the mental health needs of international students remains pivotal for fostering inclusive and supportive learning environments.

Keywords: international students, mental health interventions, cross-cultural support, silk road scholarship, meta-analysis

Procedia PDF Downloads 63
22042 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 292
22041 Alternate Dispute Resolution: Expeditious Justice

Authors: Uzma Fakhar, Osama Fakhar, Aamir Shafiq Ch

Abstract:

Methods of alternate dispute resolution (ADR) like conciliation, arbitration, mediation are the supplement to ensure inexpensive and expeditious justice in a country. Justice delayed has not only created chaos, but an element of rebellious behavior towards judiciary is being floated among people. Complexity of traditional judicial system and its diversity has created an overall coherence. Admittedly, In Pakistan the traditional judicial system has failed to achieve its goals which resulted in the backlog of cases pending in courts, resultantly even the critics of alternate dispute resolution agree to restore the spirit of expeditious justice by reforming the old Panchayat system. The Government is keen to enact certain laws and make amendments to facilitate the resolution of a dispute through a simple and faster ADR framework instead of a lengthy and exhausting complex trial in order to create proliferation and faith in alternate dispute resolution. This research highlights the value of ADR in a country like Pakistan for revival of the confidence of the people upon the judicial process and a useful judicial tool to reduce the pressure on the judiciary.

Keywords: alternate dispute resolution, development of law, expeditious justice, Pakistan

Procedia PDF Downloads 226
22040 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy

Procedia PDF Downloads 229
22039 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 134
22038 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 180
22037 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 254
22036 Promoting Diversity and Equity through Interdisciplinary Leadership Training

Authors: Sharon Milberger, Jane Turner, Denise White-Perkins

Abstract:

Michigan shares the overall U.S. national need for more highly qualified professionals who have knowledge and experience in the use of evidence-based practices to meet the special health care needs of children, adolescents, and adults with neurodevelopmental disabilities including autism spectrum disorder (DD/ASD). The Michigan Leadership Education in Neurodevelopmental Disabilities (MI-LEND) program is a consortium of six universities that spans the state of Michigan and serves more than 181,800 undergraduate, graduate, and professional students. The purpose of the MI LEND program is to improve the health of infants, children and adolescents with disabilities in Michigan by training individuals from different disciplines to assume leadership roles in their respective fields and work across disciplines. The MI-LEND program integrates “L.I.F.E.” perspectives into all training components. L.I.F.E. is an acronym for Leadership, Interdisciplinary, Family-Centered and Equity perspectives. This paper will describe how L.I.F.E. perspectives are embedded into all aspects of the MI-LEND training program including the application process, didactic training, community and clinical experiences, discussions, journaling and projects. Specific curriculum components will be described including content from a training module dedicated to Equity. Upon completion of the Equity module, trainees are expected to be able to: 1) Use a population health framework to identify key social determinants impacting families and children; 2) Explain how addressing bias and providing culturally appropriate linguistic care/services can influence patient/client health and wellbeing; and 3) Describe the impact of policy and structural/institutional factors influencing care and services for children with DD/ASD and their families. Each trainee completes two self-assessments: the Cultural and Linguistic Competence Health Practitioner Assessment and the other assessing social attitudes/implicit bias. Trainees also conduct interviews with a family with a child with DD/ASD. In addition, interdisciplinary Equity-related group activities are incorporated into face-to-face training sessions. Each MI-LEND trainee has multiple ongoing opportunities for self-reflection through discussion and journaling and completion of a L.I.F.E. project as a culminating component of the program. The poster will also discuss the challenges related to teaching and measuring successful outcomes related to diversity/equity perspectives.

Keywords: disability, diversity, equity, training

Procedia PDF Downloads 167
22035 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 49
22034 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 222
22033 Design-Based Elements to Sustain Participant Activity in Massive Open Online Courses: A Case Study

Authors: C. Zimmermann, E. Lackner, M. Ebner

Abstract:

Massive Open Online Courses (MOOCs) are increasingly popular learning hubs that are boasting considerable participant numbers, innovative technical features, and a multitude of instructional resources. Still, there is a high level of evidence showing that almost all MOOCs suffer from a declining frequency of participant activity and fairly low completion rates. In this paper, we would like to share the lessons learned in implementing several design patterns that have been suggested in order to foster participant activity. Our conclusions are based on experiences with the ‘Dr. Internet’ MOOC, which was created as an xMOOC to raise awareness for a more critical approach to online health information: participants had to diagnose medical case studies. There is a growing body of recommendations (based on Learning Analytics results from earlier xMOOCs) as to how the decline in participant activity can be alleviated. One promising focus in this regard is instructional design patterns, since they have a tremendous influence on the learner’s motivation, which in turn is a crucial trigger of learning processes. Since Medieval Age storytelling, micro-learning units and specific comprehensible, narrative structures were chosen to animate the audience to follow narration. Hence, MOOC participants are not likely to abandon a course or information channel when their curiosity is kept at a continuously high level. Critical aspects that warrant consideration in this regard include shorter course duration, a narrative structure with suspense peaks (according to the ‘storytelling’ approach), and a course schedule that is diversified and stimulating, yet easy to follow. All of these criteria have been observed within the design of the Dr. Internet MOOC: 1) the standard eight week course duration was shortened down to six weeks, 2) all six case studies had a special quiz format and a corresponding resolution video which was made available in the subsequent week, 3) two out of six case studies were split up in serial video sequences to be presented over the span of two weeks, and 4) the videos were generally scheduled in a less predictable sequence. However, the statistical results from the first run of the MOOC do not indicate any strong influences on the retention rate, so we conclude with some suggestions as to why this might be and what aspects need further consideration.

Keywords: case study, Dr. internet, experience, MOOCs, design patterns

Procedia PDF Downloads 269
22032 Risk Management in Islamic Micro Finance Credit System for Poverty Alleviation from Qualitative Perspective

Authors: Liyu Adhi Kasari Sulung

Abstract:

Poverty has been a major problem in Indonesia. Islamic micro finance (IMF) named Baitul Maal Wat Tamwil (Bmt) plays a prominent role to eradicate this. Indonesia as the biggest muslim country has many successful applied products such as worldwide adopt group-based lending approach, flexible financing for farmers, and gold pawning. The Problems related to these models are operation risk management and internal control system (ICS). A proper ICS will help an organization in preventing the occurrence of bad financing through detecting error and irregularities in its operation. This study aims to seek a proper risk management scheme of credit system in Bmt and internal control system’s rank for every stage. Risk management variables are obtained at the first In-Depth Interview (IDI) and Focus Group Discussion (FGD) with Shariah supervisory boards, boards of directors, and operational managers. Survey was conducted covering nationwide data; West Java, South Sulawesi, and West Nusa Tenggara. Moreover, Content analysis is employed to build the relationship among these variables. Research Findings shows that risk management Characteristics in Indonesia involves ex ante, credit process, and ex post strategies to deal with risk in credit system. Ex-ante control consists of Shariah compliance, survey, group leader reference, and islamic forming orientation. Then, credit process involves saving, collateral, joint liability, loan repayment, and credit installment controlling. Finally, ex-post control includes shariah evaluation, credit evaluation, grace period and low installment provisions. In addition, internal control order sort three stages by its priority; Credit process as first rank, then ex-post control as second, and ex ante control as the last rank.

Keywords: internal control system, islamic micro finance, poverty, risk management

Procedia PDF Downloads 412
22031 Microalgae Technology for Nutraceuticals

Authors: Weixing Tan

Abstract:

Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.

Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances

Procedia PDF Downloads 160
22030 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: image fusion, iris recognition, local binary pattern, wavelet

Procedia PDF Downloads 369
22029 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach

Authors: Jared Beard, Ali Baheri

Abstract:

As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.

Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification

Procedia PDF Downloads 161
22028 An Android Geofencing App for Autonomous Remote Switch Control

Authors: Jamie Wong, Daisy Sang, Chang-Shyh Peng

Abstract:

Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch.

Keywords: location based service, geofence, autonomous, remote switch

Procedia PDF Downloads 319