Search results for: user interfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2531

Search results for: user interfaces

1751 Design of UV Based Unicycle Robot to Disinfect Germs and Communicate With Multi-Robot System

Authors: Charles Koduru, Parth Patel, M. Hassan Tanveer

Abstract:

In this paper, the communication between a team of robots is used to sanitize an environment with germs is proposed. We introduce capabilities from a team of robots (most likely heterogeneous), a wheeled robot named ROSbot 2.0 that consists of a mounted LiDAR and Kinect sensor, and a modified prototype design of a unicycle-drive Roomba robot called the UV robot. The UV robot consists of ultrasonic sensors to avoid obstacles and is equipped with an ultraviolet light system to disinfect and kill germs, such as bacteria and viruses. In addition, the UV robot is equipped with disinfectant spray to target hidden objects that ultraviolet light is unable to reach. Using the sensors from the ROSbot 2.0, the robot will create a 3-D model of the environment which will be used to factor how the ultraviolet robot will disinfect the environment. Together this proposed system is known as the RME assistive robot device or RME system, which communicates between a navigation robot and a germ disinfecting robot operated by a user. The RME system includes a human-machine interface that allows the user to control certain features of each robot in the RME assistive robot device. This method allows the cleaning process to be done at a more rapid and efficient pace as the UV robot disinfects areas just by moving around in the environment while using the ultraviolet light system to kills germs. The RME system can be used in many applications including, public offices, stores, airports, hospitals, and schools. The RME system will be beneficial even after the COVID-19 pandemic. The Kennesaw State University will continue the research in the field of robotics, engineering, and technology and play its role to serve humanity.

Keywords: multi robot system, assistive robots, COVID-19 pandemic, ultraviolent technology

Procedia PDF Downloads 187
1750 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations

Authors: Priyanka Bharti

Abstract:

Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.

Keywords: cognition, visual, decision making, graphics, recognition

Procedia PDF Downloads 269
1749 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 365
1748 Authoring of Augmented Reality Manuals for Not Physically Available Products

Authors: Vito M. Manghisi, Michele Gattullo, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction.

Keywords: augmented reality, human computer interaction, operating instructions, maintenance, assembly

Procedia PDF Downloads 129
1747 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 61
1746 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 137
1745 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 93
1744 Applying Push Notifications with Behavioral Change Strategies in Fitness Applications: A Survey of User's Perception Based on Consumer Engagement

Authors: Yali Liu, Maria Avello Iturriagagoitia

Abstract:

Background: Fitness applications (apps) are one of the most popular mobile health (mHealth) apps. These apps can help prevent/control health issues such as obesity, which is one of the most serious public health challenges in the developed world in recent decades. Compared with the traditional intervention like face-to-face treatment, it is cheaper and more convenient to use fitness apps to interfere with physical activities and healthy behaviors. Nevertheless, fitness applications apps tend to have high abandonment rates and low levels of user engagement. Therefore, maintaining the endurance of users' usage is challenging. In fact, previous research shows a variety of strategies -goal-setting, self-monitoring, coaching, etc.- for promoting fitness and health behavior change. These strategies can influence the users’ perseverance and self-monitoring of the program as well as favoring their adherence to routines that involve a long-term behavioral change. However, commercial fitness apps rarely incorporate these strategies into their design, thus leading to a lack of engagement with the apps. Most of today’s mobile services and brands engage their users proactively via push notifications. Push notifications. These notifications are visual or auditory alerts to inform mobile users about a wide range of topics that entails an effective and personal mean of communication between the app and the user. One of the research purposes of this article is to implement the application of behavior change strategies through push notifications. Proposes: This study aims to better understand the influence that effective use of push notifications combined with the behavioral change strategies will have on users’ engagement with the fitness app. And the secondary objectives are 1) to discuss the sociodemographic differences in utilization of push notifications of fitness apps; 2) to determine the impact of each strategy in customer engagement. Methods: The study uses a combination of the Consumer Engagement Theory and UTAUT2 based model to conduct an online survey among current users of fitness apps. The questionnaire assessed attitudes to each behavioral change strategy, and sociodemographic variables. Findings: Results show the positive effect of push notifications in the generation of consumer engagement and the different impacts of each strategy among different groups of population in customer engagement. Conclusions: Fitness apps with behavior change strategies have a positive impact on increasing users’ usage time and customer engagement. Theoretical experts can participate in designing fitness applications, along with technical designers.

Keywords: behavioral change, customer engagement, fitness app, push notification, UTAUT2

Procedia PDF Downloads 136
1743 Critical Success Factors Quality Requirement Change Management

Authors: Jamshed Ahmad, Abdul Wahid Khan, Javed Ali Khan

Abstract:

Managing software quality requirements change management is a difficult task in the field of software engineering. Avoiding incoming changes result in user dissatisfaction while accommodating to many requirement changes may delay product delivery. Poor requirements management is solely considered the primary cause of the software failure. It becomes more challenging in global software outsourcing. Addressing success factors in quality requirement change management is desired today due to the frequent change requests from the end-users. In this research study, success factors are recognized and scrutinized with the help of a systematic literature review (SLR). In total, 16 success factors were identified, which significantly impacted software quality requirement change management. The findings show that Proper Requirement Change Management, Rapid Delivery, Quality Software Product, Access to Market, Project Management, Skills and Methodologies, Low Cost/Effort Estimation, Clear Plan and Road Map, Agile Processes, Low Labor Cost, User Satisfaction, Communication/Close Coordination, Proper Scheduling and Time Constraints, Frequent Technological Changes, Robust Model, Geographical distribution/Cultural differences are the key factors that influence software quality requirement change. The recognized success factors and validated with the help of various research methods, i.e., case studies, interviews, surveys and experiments. These factors are then scrutinized in continents, database, company size and period of time. Based on these findings, requirement change will be implemented in a better way.

Keywords: global software development, requirement engineering, systematic literature review, success factors

Procedia PDF Downloads 197
1742 Designing of Content Management Systems (CMS) for Web Development

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Content Management Systems (CMS) have transformed the landscape of web development by providing an accessible and efficient platform for creating and managing digital content. This abstract explores the key features and benefits of CMS in web development, highlighting its impact on website creation and maintenance. CMS offers a user-friendly interface that empowers individuals to create, edit, and publish content without requiring extensive technical knowledge. With customizable templates and themes, users can personalize the design and layout of their websites, ensuring a visually appealing online presence. Furthermore, CMS facilitates efficient content organization through categorization and tagging, enabling visitors to navigate and search for information effortlessly. It also supports version control, allowing users to track and manage revisions effectively. Scalability is a notable advantage of CMS, as it offers a wide range of plugins and extensions to integrate additional features into websites. From e-commerce functionality to social media integration, CMS adapts to evolving business needs. Additionally, CMS enhances collaborative workflows by allowing multiple user roles and permissions. This enables teams to collaborate effectively on content creation and management, streamlining processes and ensuring smooth coordination. In conclusion, CMS serves as a powerful tool in web development, simplifying content creation, customization, organization, scalability, and collaboration. With CMS, individuals and businesses can create dynamic and engaging websites, establishing a strong online presence with ease.

Keywords: web development, content management systems, information technology, programming

Procedia PDF Downloads 87
1741 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.

Keywords: censored data, R statistical software, reliability analysis, time to failure

Procedia PDF Downloads 401
1740 Evaluating the Impact of Landscape Values Associated With the Landscape Developemnt Approach of Neighbourhood Gardens; In Tier Two Cities of India; On Users’ Perception Towards the Space. Case: City of Nashik, Maharashtra, India

Authors: Anandi Anant Lale, Pooja Sadananda Patil

Abstract:

Neighbourhood gardens (NGs), in the rapidly growing tier two cities of India, play a pivotal role in maintaining and enhancing the quality of life of the dwellers in terms of mental, physical and socio- cultural well-being. They are the breathing areas which avail the opportunity of accessing nature while being in the close proximity of modern infrastructural provisions of the neighbourhood. In this article, the landscape values (viz. Cultural, Functional, Environmental and Perceptual) associated with the landscape development approach of neighbourhood gardens in the city of Nashik; one of the major tier two cities of Maharashtra; India, are studied through physical survey of selected NGs and the respective neighborhoods. Contextual study of the selected neighbourhood with the emphasis on dwellers' response in terms of physical as well as mental associations with the NGs is recorded through visitors' interviews. Analysis of interrelation of the landscape values and the users' response to the NGs revealed that each landscape value associated with the landscape development approach, has impact of diverse intensity on the users' perception, in different neighbourhoods. Contextual needs of selected neighbourhoods govern the user's perception towards the respective NGs and eventually define the role of landscape value/s associated with the landscape development approach of NG in deciding the competence of the space. The findings of the study can form the basis to redefine the landscape development approach for the future NGs in tier two cities of India that will justify the contextual needs of every neighbourhood through the emphasis of landscape values.

Keywords: neighbourhood garden, landscape value, user’s perception, context, landscape development

Procedia PDF Downloads 118
1739 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 419
1738 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 54
1737 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers

Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala

Abstract:

The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.

Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification

Procedia PDF Downloads 165
1736 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test

Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi

Abstract:

The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.

Keywords: geofoam, geomembrane, soft ground, strength shear

Procedia PDF Downloads 317
1735 Blockchain Technology Applications in Patient Tracking Systems Regarding Privacy-Preserving Concerns and COVID-19 Pandemic

Authors: Farbod Behnaminia, Saeed Samet

Abstract:

The COVID-19 pandemic has paralyzed many lives until a vaccine was available, which caused the so-called “new normal.” According to the World Health Organization (WHO), COVID-19 is an infectious disease. It can cause significant illness or death in anyone. Governments and health officials tried to impose rules and regulations to avoid and slow down transmission. Therefore, software engineers worldwide developed applications to trace and track patients’ movements and notify others, mainly using Bluetooth. In this way, everyone could be informed whether they come in close contact with someone who has COVID-19 and takes proper safety precautions. Because most of the applications use technologies that can potentially reveal the user’s identity and location, researchers have debated privacy preservation and how to improve user privacy during such pandemics. Thanks to Distributed Ledger Technology (DLT), there have been some proposed methods to develop privacy-preserving Patient Tracking Systems in the last two years. As an instance of the DLT, Blockchain is like a decentralized peer-to-peer database that maintains a record of transactions. Transactions are immutable, transparent, and anonymous in this system. We conducted a comprehensive evaluation of the literature by looking for papers in the relevant field and dividing them into pre- and post-pandemic systems. Additionally, we discussed the many uses of blockchain technology in pandemic control. We found that two major obstacles facing blockchain implementation across many healthcare systems are scalability and privacy. The Polkadot platform is presented, along with a review of its efficacy in tackling current concerns. A more scalable healthcare system is achievable in the near future using Polkadot as well as a much more privacy-preserving environment.

Keywords: blockchain, electronic record management, EHR, privacy-preserving, patient tracking, COVID-19, trust and confidence, Polkadot

Procedia PDF Downloads 102
1734 Social Media Diffusion And Implications For Opinion Leadership In Northcentral Nigeria

Authors: Chuks Odiegwu-Enwerem

Abstract:

The classical notion of opinion leadership presupposes that the media is at the center of an effective and successful opinion leadership. Under this idea, an opinion leader is an active media user who consumes, understands, digests and interprets the messages for the understanding and acceptance/adoption by lower-end media users – whose access and understanding of media content are supposedly low. Because of their unique access to and presumed understanding of media functions and their content, opinion leaders are typically esteemed by those who look forward to and accept their opinions. Lazarsfeld and Katz’s two-step flow of communication theory is the basis of opinion leadership – propelled by limited access to the media. With the emergence and spread of social media and its unlimited access by all and sundry, however, the study interrogates the relevance and application of opinion leaders and, by implication, the two-step flow communication theory in Nigeria’s Northcentral region. It seeks to determine whether opinion leaders still exist in the picture and if they still exert considerable influence, especially in matters of political conversations and decision-making among the citizens of this area. It further explores whether the diffusion of social media is a reality and how the ‘low-end’ media users react to the new-found freedom of access to media, and how they are using it to inform their decisions on important matters as well as examines if they are still glued to their opinion leaders. This study explores the empirical dimensions of the two-step flow hypothesis in relation to the activities of social media to determine if a change has occurred and in what direction, using mixed methos of Survey and in-depth interviews. Our understanding and belief in some theoretical assumptions may be enhanced or challenged by the study outcome.

Keywords: Opinion Leadership, Active Media User, Two-Step-Flow, Social media, Northcentral Nigeria

Procedia PDF Downloads 73
1733 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality

Authors: David Sinfield, Thomas Cochrane, Marcos Steagall

Abstract:

While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.

Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications

Procedia PDF Downloads 240
1732 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 174
1731 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces

Authors: S. Perera, T. R. Walsh, M. Solvang

Abstract:

The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.

Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface

Procedia PDF Downloads 99
1730 A Review of Data Visualization Best Practices: Lessons for Open Government Data Portals

Authors: Bahareh Ansari

Abstract:

Background: The Open Government Data (OGD) movement in the last decade has encouraged many government organizations around the world to make their data publicly available to advance democratic processes. But current open data platforms have not yet reached to their full potential in supporting all interested parties. To make the data useful and understandable for everyone, scholars suggested that opening the data should be supplemented by visualization. However, different visualizations of the same information can dramatically change an individual’s cognitive and emotional experience in working with the data. This study reviews the data visualization literature to create a list of the methods empirically tested to enhance users’ performance and experience in working with a visualization tool. This list can be used in evaluating the OGD visualization practices and informing the future open data initiatives. Methods: Previous reviews of visualization literature categorized the visualization outcomes into four categories including recall/memorability, insight/comprehension, engagement, and enjoyment. To identify the papers, a search for these outcomes was conducted in the abstract of the publications of top-tier visualization venues including IEEE Transactions for Visualization and Computer Graphics, Computer Graphics, and proceedings of the CHI Conference on Human Factors in Computing Systems. The search results are complemented with a search in the references of the identified articles, and a search for 'open data visualization,' and 'visualization evaluation' keywords in the IEEE explore and ACM digital libraries. Articles are included if they provide empirical evidence through conducting controlled user experiments, or provide a review of these empirical studies. The qualitative synthesis of the studies focuses on identification and classifying the methods, and the conditions under which they are examined to positively affect the visualization outcomes. Findings: The keyword search yields 760 studies, of which 30 are included after the title/abstract review. The classification of the included articles shows five distinct methods: interactive design, aesthetic (artistic) style, storytelling, decorative elements that do not provide extra information including text, image, and embellishment on the graphs), and animation. Studies on decorative elements show consistency on the positive effects of these elements on user engagement and recall but are less consistent in their examination of the user performance. This inconsistency could be attributable to the particular data type or specific design method used in each study. The interactive design studies are consistent in their findings of the positive effect on the outcomes. Storytelling studies show some inconsistencies regarding the design effect on user engagement, enjoyment, recall, and performance, which could be indicative of the specific conditions required for the use of this method. Last two methods, aesthetics and animation, have been less frequent in the included articles, and provide consistent positive results on some of the outcomes. Implications for e-government: Review of the visualization best-practice methods show that each of these methods is beneficial under specific conditions. By using these methods in a potentially beneficial condition, OGD practices can promote a wide range of individuals to involve and work with the government data and ultimately engage in government policy-making procedures.

Keywords: best practices, data visualization, literature review, open government data

Procedia PDF Downloads 107
1729 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
1728 A State-Of-The-Art Review on Web Services Adaptation

Authors: M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz

Abstract:

Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.

Keywords: Web Services Adapters, software adaptation, web services mismatches, web services interoperability

Procedia PDF Downloads 295
1727 Leveraging Mobile Apps for Citizen-Centric Urban Planning: Insights from Tajawob Implementation

Authors: Alae El Fahsi

Abstract:

This study explores the ‘Tajawob’ app's role in urban development, demonstrating how mobile applications can empower citizens and facilitate urban planning. Tajawob serves as a digital platform for community feedback, engagement, and participatory governance, addressing urban challenges through innovative tech solutions. This research synthesizes data from a variety of sources, including user feedback, engagement metrics, and interviews with city officials, to assess the app’s impact on citizen participation in urban development in Morocco. By integrating advanced data analytics and user experience design, Tajawob has bridged the communication gap between citizens and government officials, fostering a more collaborative and transparent urban planning process. The findings reveal a significant increase in civic engagement, with users actively contributing to urban management decisions, thereby enhancing the responsiveness and inclusivity of urban governance. Challenges such as digital literacy, infrastructure limitations, and privacy concerns are also discussed, providing a comprehensive overview of the obstacles and opportunities presented by mobile app-based citizen engagement platforms. The study concludes with strategic recommendations for scaling the Tajawob model to other contexts, emphasizing the importance of adaptive technology solutions in meeting the evolving needs of urban populations. This research contributes to the burgeoning field of smart city innovations, offering key insights into the role of digital tools in facilitating more democratic and participatory urban environments.

Keywords: smart cities, digital governance, urban planning, strategic design

Procedia PDF Downloads 60
1726 Virtual Life: Fashion, Expression, and Identity in the Digital World

Authors: Elizabeth Bourgeois

Abstract:

During social distancing, fashion and self-expression have been pushed further into virtual environments. In VR spaces, identities can be curated easily, untethered from the necessities of life and work. Personal styles reach a wider audience and follow new rules. Digital platforms leave some, but not all, 'real world' clothing constraints behind. Virtual aesthetics are set by the user and the software. Gen Z is a native user, applying face filters on Instagram and Snapchat and styling outfits and skins in apps like Gacha Life, Roblox, and Fortnite. These games cultivate space for community and personal style. Loosely tied to human forms, each app has physical aesthetics, with clear vernacular dress defining it. There are ecosystems of makers, consumers, and critics. Designer-modelers create original assets, brands, and luxury items. Fashion and beauty are ephemeral but always reflect the idealization of form and self. Online communities have already established new beauty ideals that impact live fashion trends. Fashion houses develop AR filters, gaming hairstyles challenge real-world colorists, and musicians perform virtual concerts in their avatar forms. In these times, social media and gaming communities promote the expression of public identity. The online dress is no longer tied to 'real' bodies or cloth. In virtual worlds, there are still tribes, status symbols, gender identities, and roles, but free of fabric, form, and static social structure, there is room for fantastic invention.

Keywords: virtual reality, fashion, Gen Z, social media, gaming

Procedia PDF Downloads 137
1725 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 101
1724 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 23
1723 Future Sustainable Mobility for Colorado

Authors: Paolo Grazioli

Abstract:

In this paper, we present the main results achieved during an eight-week international design project on Colorado Future Sustainable Mobilitycarried out at Metropolitan State University of Denver. The project was born with the intention to seize the opportunity created by the Colorado government’s plan to promote e-bikes mobility by creating a large network of dedicated tracks. The project was supported by local entrepreneurs who offered financial and professional support. The main goal of the project was to engage design students with the skills to design a user-centered, original vehicle that would satisfy the unarticulated practical and emotional needs of “Gen Z” users by creating a fun, useful, and reliablelife companion that would helps users carry out their everyday tasks in a practical and enjoyable way. The project was carried out with the intention of proving the importance of the combination of creative methods with practical design methodologies towards the creation of an innovative yet immediately manufacturable product for a more sustainable future. The final results demonstrate the students' capability to create innovative and yet manufacturable products and, especially, their ability to create a new design paradigm for future sustainable mobility products. The design solutions explored n the project include collaborative learning and human-interaction design for future mobility. The findings of the research led students to the fabrication of two working prototypes that will be tested in Colorado and developed for manufacturing in the year 2024. The project showed that collaborative design and project-based teaching improve the quality of the outcome and can lead to the creation of real life, innovative products directly from the classroom to the market.

Keywords: sustainable transportation design, interface design, collaborative design, user -centered design research, design prototyping

Procedia PDF Downloads 98
1722 The Application of Robotic Surgical Approaches in the Management of Midgut Neuroendocrine Tumours: A Systematic Review

Authors: Jatin Sridhar Naidu, Aryan Arora, Zainab Shafiq, Reza Mirnezami

Abstract:

Background: Robotic-assisted surgery (RAS) promises good outcomes in midgut adenocarcinoma surgery. However, its effectiveness in midgut neuroendocrine tumours (MNETs) is unknown. This study aimed to assess the current use, user interface, and any emerging developments of RAS in MNET treatment using the literature available. Methods: This review was carried out using PRISMA guidelines. MEDLINE, EMBASE, and Web of Science were searched on 22nd October 2022. All studies reporting primary data on robotic surgery in midgut neuroendocrine tumours or carcinoid tumours were included. The midgut was defined to be from the duodenojejunal flexure to the splenic flexure. Methodological quality was assessed using the Joanna Briggs critical appraisal tool. Results: According to our systematic review protocol, nineteen studies were selected. A total of twenty-six patients were identified. RAS was used for right colectomies, right hemicolectomies, ileal resections, caecal resections, intracorporeal anastomoses, and complete mesocolic excisions. It offered an optimal user-interface with enhanced visuals, fine dexterity, and ergonomic work position. Innovative developments in tumour-healthy tissue boundary and vasculature visualisation were reported. Conclusion: RAS for MNETs is safe and feasible, although the evidence base is limited. We recommend large prospective-randomised controlled trials comparing it with laparoscopy and open surgery. Developments in intraoperative contrast dyes and tumour-specific probes are very promising.

Keywords: robotic surgery, colorectal surgery, neuroendocrine neoplasms, midgut neoplasms

Procedia PDF Downloads 90