Search results for: social network Analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36586

Search results for: social network Analysis

35806 Effects of Social Stories toward Social Interaction of Students with Autism Spectrum Disorder

Authors: Sawitree Wongkittirungrueang

Abstract:

The objectives of this research were: 1) to study the effect of social stories on social interaction of students with autism. The sample was Pratomsuksa level 5 student with autism, Khon Kaen University Demonstration School, who was diagnosed by the Physician as High Functioning Autism since he was able to read, write, calculate and was studying in inclusive classroom. However, he still had disability in social interaction to participate in social activity group and communication. He could not learn how to develop friendship or create relationship. He had inappropriate behavior in social context. He did not understand complex social situations. In addition, he did seemed not know time and place. He was not able to understand feeling of oneself as well as the others. Consequently, he could not express his emotion appropriately. He did not understand or express his non-verbal language for communicating with friends. He lacked of common interest or emotion with nearby persons. He greeted inappropriately or was not interested in greeting. In addition, he did not have eye contact. He used inadequate language etc. He was elected by Purposive Sampling. His parents were willing to allow them to participate in this study. The research instruments were the lesson plan of social stories, and the picture book of social stories. The instruments used for data collection, were the social interaction evaluation of autistic students. This research was Quasi Experimental Research as One Group Pre-test, Post-test Design. For the Pre-test, the experiment was conducted by social stories. Then, the Post-test was implemented. The statistic used for data analysis, included the Mean, and Standard Deviation. The research findings were shown by Graph. The findings revealed hat the autistic students taught by social stories indicated better social interaction after being taught by social stories.

Keywords: social story, autism spectrum disorder (ASD), autism, social interaction

Procedia PDF Downloads 245
35805 A Social Network Analysis for Formulating Construction Defect Generation Mechanisms

Authors: Hamad Aljassmi, Sangwon Han

Abstract:

Various solutions for preventing construction defects have been suggested. However, a construction company may have difficulties adopting all these suggestions due to financial and practical constraints. Based on this recognition, this paper aims to identify the most significant defect causes and formulate their defect generation mechanism in order to help a construction company to set priorities of its defect prevention strategies. For this goal, we conducted a questionnaire survey of 106 industry professionals and identified five most significant causes including: (1) organizational culture, (2) time pressure and constraints, (3) workplace quality system, (4) financial constraints upon operational expenses and (5) inadequate employee training or learning opportunities.

Keywords: defect, quality, failure, risk

Procedia PDF Downloads 625
35804 Assessing the Social Impacts of Regional Services: The Case of a Portuguese Municipality

Authors: A. Camões, M. Ferreira Dias, M. Amorim

Abstract:

In recent years, the social economy is increasingly seen as a viable means to address social problems. Social enterprises, as well as public projects and initiatives targeted to meet social purposes, offer organizational models that assume heterogeneity, flexibility and adaptability to the ‘real world and real problems’. Despite the growing popularity of social initiatives, decision makers still face a paucity in what concerns the available models and tools to adequately assess its sustainability, and its impacts, notably the nature of its contribution to economic growth. This study was carried out at the local level, by analyzing the social impact initiatives and projects promoted by the Municipality of Albergaria-a-Velha (Câmara Municipal de Albergaria-a-Velha -CMA), a municipality of 25,000 inhabitants in the central region of Portugal. This work focuses on the challenges related to the qualifications and employability of citizens, which stands out as one of the key concerns in the Portuguese economy, particularly expressive in the context of small-scale cities and inland territories. The study offers a characterization of the Municipality, its socio-economic structure and challenges, followed by an exploratory analysis of multiple sourced data, collected from the CMA's documental sources as well as from privileged informants. The purpose is to conduct detailed analysis of the CMA's social projects, aimed at characterizing its potential impact for the model of qualifications and employability of the citizens of the Municipality. The study encompasses a discussion of the socio-economic profile of the municipality, notably its asymmetries, the analysis of the social projects and initiatives, as well as of data derived from inquiry actors involved in the implementation of the social projects and its beneficiaries. Finally, the results obtained with the Better Life Index will be included. This study makes it possible to ascertain if what is implicit in the literature goes to the encounter of what one experiences in reality.

Keywords: measurement, municipalities, social economy, social impact

Procedia PDF Downloads 133
35803 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 312
35802 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 133
35801 Design and Realization of Social Responsibility Report Writing System

Authors: Hao Qin

Abstract:

This paper proposes a guiding tool for companies to write social responsibility report by developing an applicable writing system based on analysis of its functional requirements, writing indicators and roles. The system’s operation and results concerned will be demonstrated as well.

Keywords: social responsibility, report writing, system, design and realization

Procedia PDF Downloads 373
35800 Antecedents and Consequences of Social Media Adoption in Travel and Tourism: Evidence from Customers and Industry

Authors: Mohamed A. Abou-Shouk, Mahamoud M. Hewedi

Abstract:

This study extends technology acceptance model (TAM) to investigate the antecedents and consequences of social media adoption by tourists and travel agents. It compares their perceptions on social media adoption and its consequences. Online survey was addressed to tourists and travel agents for data collection purposes. Structural equation modelling was employed for analysis purposes. The findings revealed that the majority of tourists and travel agents involved in the study believe in the usefulness of social media adoption for travel planning and marketing purposes. They agree that adopting social media could change the attitude of tourists towards specific destination or attraction and influence their purchasing decisions. This study contributes to knowledge by extending TAM and provides some managerial implication to marketers.

Keywords: TAM, social media, travel and tourism, travel agents

Procedia PDF Downloads 410
35799 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT

Procedia PDF Downloads 480
35798 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 211
35797 Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network

Authors: Sheng Fu, Yinbo Gao, Hao Lin

Abstract:

In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors.

Keywords: condition monitoring, wireless sensor network, air compressor, zigbee, data collecting

Procedia PDF Downloads 503
35796 A Survey on Important Factors of the Ethereum Network Performance

Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia

Abstract:

Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.

Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm

Procedia PDF Downloads 224
35795 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: attributed community, attribute detection, community, social network

Procedia PDF Downloads 160
35794 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis

Authors: William Ho, Agus Wicaksana

Abstract:

Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.

Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review

Procedia PDF Downloads 73
35793 Social Business Process Management and Business Process Management Maturity

Authors: Dalia Suša Vugec, Vesna Bosilj Vukšić, Ljubica Milanović Glavan

Abstract:

Business process management (BPM) is a well-known holistic discipline focused on managing business processes with the intention of achieving higher level of BPM maturity and better organizational performance. In recent period, traditional BPM faced some of its limitations like model-reality divide and lost innovation. Following latest trends, as an attempt to overcome the issues of traditional BPM, there has been an introduction of applying the principles of social software in managing business processes which led to the development of social BPM. However, there are not many authors or studies dealing with this topic so this study aims to contribute to that literature gap and to examine the link between the level of BPM maturity and the usage of social BPM. To meet these objectives, a survey within the companies with more than 50 employees has been conducted. The results reveal that the usage of social BPM is higher within the companies which achieved higher level of BPM maturity. This paper provides an overview, analysis and discussion of collected data regarding BPM maturity and social BPM within the observed companies and identifies the main social BPM principles.

Keywords: business process management, BPM maturity, process performance index, social BPM

Procedia PDF Downloads 322
35792 A Study of Inter-Media Discourse Construction on Sino-US Trade Friction Based on Network Agenda Setting Theory

Authors: Wanying Xie

Abstract:

Under the background of the increasing Sino-US trade friction, the two nations pay more attention to the medias’ words. This paper mainly studies the causality, effectiveness, and influence of discourse construction between traditional media and social media. Based on the Network Agenda Setting theory, a kind of associative memory pattern in Psychology, who focuses on how media affect audiences’ cognition of issues and attributes, as well as the significance of the relation between people and matters. The date of the sample chosen in this paper ranges from March 23, 2018, to April 30, 2019. A total of 395 Tweets of Donald Trump are obtained, and 731 related reports are collected from the mainstream American newspapers including New York Times, the Washington Post and the Washington Street, by using Factiva and other databases. The sample data are processed by MAXQDA while the media discourses are analyzed by SPSS and Cite Space, with an aim to study: 1) whether the inter-media discourse construction exists; 2) which media (traditional media V.S. social media) is dominant; 3) the causality between two media. The results show: 1) the discourse construction between three American mainstream newspapers and Donald Trump's Twitter is proved in some periods; 2) the dominant position is extremely depended on the events; 3) the causality between two media is decided by many reasons. New media technology shortens the time of agenda-setting effect to one day or less. By comparing the specific relation between the three major American newspapers and Donald Trump’s Twitter, whose popularity and influence could be reflected. Hopefully, this paper could enable readers to have a more comprehensive understanding of the international media language and political environment.

Keywords: discourse construction, media language, network agenda-setting theory, sino-us trade friction

Procedia PDF Downloads 256
35791 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: connectivism, learning analytics, lifelong learning, social semantic web

Procedia PDF Downloads 213
35790 Urban Poor: The Situations and Characteristics of the Problem and Social Welfare Service of Bangkok Metropolis

Authors: Sanchai Ratthanakwan

Abstract:

This research aims to study situations and characteristics of the problems facing the urban poor. The data and information are collected by focus group and in-depth interview leader and members of Four Regions Slum Network, community representatives and the social welfare officer. The research can be concluded that the problems of the urban poor faced with three major problems: Firstly, the shortage of housing and stability issues in housing; secondly, the problem of substandard quality of life; and thirdly, the debt problem. The study found that a solution will be found in two ways: First way is the creation of housing for the urban poor in slums or community intrusion by the state. Second way is the stability in the housing and subsistence provided by the community center called “housing stability”.

Keywords: urban poor, social welfare, Bangkok metropolis, housing stability

Procedia PDF Downloads 420
35789 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria

Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui

Abstract:

The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.

Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration

Procedia PDF Downloads 417
35788 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network

Authors: Manoj Kumar

Abstract:

Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.

Keywords: AODV, DSDV, DSR, ZRP

Procedia PDF Downloads 517
35787 Evaluation of Interaction Between Fans and Celebrities in New Media

Authors: Mohadese Motahari

Abstract:

In general, we consider the phenomenon of "fandism" or extreme fandom to be an aspect of fandom for a person, a group, or a collection, which leads to extreme support for them. So, for example, we consider a fan or a "fanatic" (which literally means a "fanatical person") to be a person who is extremely interested in a certain topic or topics and has a special passion and fascination for that issue. It may also be beyond the scope of logic and normal behavior of the society. With the expansion of the media and the advancement of technology, the phenomenon of fandom also underwent many changes and not only became more intense, but a large economy was also formed alongside it, and it is becoming more and more important every day. This economy, which emerged from the past with the formation of the first media, has now taken a different form with the development of media and social networks, as well as the change in the interaction between celebrities and audiences. Earning huge amounts of money with special methods in every social network and every media is achieved through fans and fandoms. In this article, we have studied the relationship between fans and famous people with reference to the economic debates surrounding it.

Keywords: fandism, famous people, social media, new media

Procedia PDF Downloads 90
35786 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 282
35785 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 580
35784 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 343
35783 Dynamics of Museum Visitors’ Experiences Studies: A Bibliometric Analysis

Authors: Tesfaye Fentaw Nigatu, Alexander Trupp, Teh Pek Yen

Abstract:

Research on museums and the experiences of visitors has flourished in recent years, especially after museums became centers of edutainment beyond preserving heritage resources. This paper aims to comprehensively understand the changes, continuities, and future research development directions of museum visitors’ experiences. To identify current research trends, the paper summarizes and analyses research article publications from 1986 to 2023 on museum visitors' experiences. Bibliometric analysis software VOSviewer and Harzing POP (Publish or Perish) were used to analyze 407 academic articles. The articles were generated from the Scopus database. The study attempted to map new insights for future scholars and academics to expand the scope of museum visitors’ experience studies by analyzing keywords, citation patterns, influential articles in the field, publication trends, collaborations between authors, institutions, and clusters of highly cited articles. Accessibility to museums, social media usage within museums, aesthetics in museum settings, mixed reality experiences, sustainability issues, and emotions have emerged as key research areas in the study of museum visitors' experiences. The results benefit stakeholders and researchers in advancing the collective progress of considering recent research trends to stay informed about the latest developments and breakthroughs in the global academic landscape and visitors’ experiences development in the museum.

Keywords: bibliometric analysis, museum, network analysis, visitors’ experiences, visual analysis

Procedia PDF Downloads 66
35782 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 319
35781 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 22
35780 Psychometric Properties of the Social Skills Rating System: Teacher Version

Authors: Amani Kappi, Ana Maria Linares, Gia Mudd-Martin

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) are more likely to develop social skills deficits that can lead to academic underachievement, peer rejection, and maladjustment. Surveying teachers about children's social skills with ADHD will become a significant factor in identifying whether the children will be diagnosed with social skills deficits. The teacher-specific version of the Social Skills Rating System scale (SSRS-T) has been used as a screening tool for children's social behaviors. The psychometric properties of the SSRS-T have been evaluated in various populations and settings, such as when used by teachers to assess social skills for children with learning disabilities. However, few studies have been conducted to examine the psychometric properties of the SSRS-T when used to assess children with ADHD. The purpose of this study was to examine the psychometric properties of the SSRS-T and two SSRS-T subscales, Social Skills and Problem Behaviors. This was a secondary analysis of longitudinal data from the Fragile Families and Child Well-Being Study. This study included a sample of 194 teachers who used the SSRS-T to assess the social skills of children aged 8 to 10 years with ADHD. Exploratory principal components factor analysis was used to assess the construct validity of the SSRS-T scale. Cronbach’s alpha value was used to assess the internal consistency reliability of the total SSRS-T scale and the subscales. Item analyses included item-item intercorrelations, item-to-subscale correlations, and Cronbach’s alpha value changes with item deletion. The results of internal consistency reliability for both the total scale and subscales were acceptable. The results of the exploratory factor analysis supported the five factors of SSRS-T (Cooperation, Self-control, Assertion, Internalize behaviors, and Externalize behaviors) reported in the original version. Findings indicated that SSRS-T is a reliable and valid tool for assessing the social behaviors of children with ADHD.

Keywords: ADHD, children, social skills, SSRS-T, psychometric properties

Procedia PDF Downloads 129
35779 Social Media Marketing in Russia

Authors: J. A. Ageeva, Z. S. Zavyalova

Abstract:

The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.

Keywords: social media, social networks, marketing, SMM

Procedia PDF Downloads 555
35778 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 104
35777 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging

Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi

Abstract:

Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.

Keywords: Web 2/0, social tags, subject headings, hybrid cataloging

Procedia PDF Downloads 159