Search results for: sequential confidence estimation
2617 Postoperative Budesonide Nasal Irrigation vs Normal Saline Irrigation for Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis
Authors: Rakan Hassan M. Alzahrani, Ziyad Alzahrani, Bader Bashrahil, Abdulrahman Elyasi, Abdullah a Ghaddaf, Rayan Alzahrani, Mohammed Alkathlan, Nawaf Alghamdi, Dakheelallah Almutairi
Abstract:
Background: Corticosteroid irrigations, which regularly involve the off-label use of budesonide mixed with normal saline in high volume Sino-nasal irrigations, have been more commonly used in the management of post-operative chronic rhinosinusitis (CRS). Objective: This article attempted to measure the efficacy of post-operative budesonide nasal irrigation compared to normal saline-alone nasal irrigation in the management of chronic rhinosinusitis (CRS) through a systematic review and meta-analysis of randomized controlled trials (RCTs). Methods: The databases PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched by two independent authors. Only RCTs comparing budesonide irrigation to normal saline alone irrigation for CRS with or without polyposis after functional endoscopic sinus surgery (FESS) were eligible. A random effect analysis model of the reported CRS-related quality of life (QOL) measures and the objective endoscopic assessment scales of the disease was done. Results: Only 6 RCTs met the eligibility criteria, with a total number of participants of 356. Compared to normal saline irrigation, budesonide nasal irrigation showed statically significant improvements in both the CRS-related quality of life (QOL) and the endoscopic findings (MD= -4.22 confidence interval [CI]: -5.63, -2.82 [P < 0.00001]), (SMD= -0.50 confidence interval [CI]: -0.93, -0.06 [P < 0.03]) respectively. Conclusion: Both intervention arms showed improvements in CRS-related QOL and endoscopic findings in post-FESS chronic rhinosinusitis with or without polyposis. However, budesonide irrigation seems to have a slight edge over conventional normal saline irrigation with no reported serious side effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression.Keywords: Budesonide, chronic rhinosinusitis, corticosteroids, nasal irrigation, normal saline
Procedia PDF Downloads 782616 Communication Anxiety in Nigerian Students Studying English as a Foreign Language: Evidence from Colleges of Education Sector
Authors: Yasàlu Haruna
Abstract:
In every transaction, the use of language is central regardless of form or complexity if any meaning is expected to be harvested therefrom. Students constituting a population group in the learning landscape of Nigeria occupy a central position with a propensity to excel or otherwise in the context of communication, especially in the learning process and social interaction. The nature or quantum of anxiety or confidence in speaking a second language is not only peculiar to societies where the second language is not an official language but to a degree, the linguistic gap created by adoption and adaptation syndrome manifests in created anxiety or lack of confidence especially where mastery of a spoken language becomes a major challenge. This paper explores the manner in which linguistic complexity and cultural barriers combine to widen the adaptation and adoption gap. In much the same way, typical issues of pronouncement, intonation and accent difficulties are vital variables that explain the root cause of anxiety. Using a combination of primary and secondary sources of data expressed in questionnaires, key informant interviews and other available data, the paper concludes that the non-integration of anxiety possibility into the education delivery framework has left a lot to be needed in cultivating second language speakers among students of Nigerian Colleges of Education. In addition, cultural barriers and the absence of integration interfaces in the course of learning within and outside the classroom contribute to further widening the gap. Again, colleagues/mates/conversation partners' mastery of a second language remains a contributory factor largely due to the quality of the preparatory school system in many parts of the country. The paper recommends that national policies and frameworks must be reviewed to consider integration windows where culture and conversation partner deficiencies can be remedied through educational events such as debates, quizzes and symposia; improvements can be attained while commercial advertisements are tailored towards seeking for adoption of second language in commerce and major cultural activities.Keywords: cultural barriers, integration, college of education and adaptation, second language
Procedia PDF Downloads 922615 The Role of Human Capital in the Evolution of Inequality and Economic Growth in Latin-America
Authors: Luis Felipe Brito-Gaona, Emma M. Iglesias
Abstract:
There is a growing literature that studies the main determinants and drivers of inequality and economic growth in several countries, using panel data and different estimation methods (fixed effects, Generalized Methods of Moments (GMM) and Two Stages Least Squares (TSLS)). Recently, it was studied the evolution of these variables in the period 1980-2009 in the 18 countries of Latin-America and it was found that one of the main variables that explained their evolution was Foreign Direct Investment (FDI). We extend this study to the year 2015 in the same 18 countries in Latin-America, and we find that FDI does not have a significant role anymore, while we find a significant negative and positive effect of schooling levels on inequality and economic growth respectively. We also find that the point estimates associated with human capital are the largest ones of the variables included in the analysis, and this means that an increase in human capital (measured by schooling levels of secondary education) is the main determinant that can help to reduce inequality and to increase economic growth in Latin-America. Therefore, we advise that economic policies in Latin-America should be directed towards increasing the level of education. We use the methodologies of estimating by fixed effects, GMM and TSLS to check the robustness of our results. Our conclusion is the same regardless of the estimation method we choose. We also find that the international recession in the Latin-American countries in 2008 reduced significantly their economic growth.Keywords: economic growth, human capital, inequality, Latin-America
Procedia PDF Downloads 2262614 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4032613 The Attitudinal Effects of Dental Hygiene Students When Changing Conventional Practices of Preventive Therapy in the Dental Hygiene Curriculum
Authors: Shawna Staud, Mary Kaye Scaramucci
Abstract:
Objective: Rubber cup polishing has been a traditional method of preventative therapy in dental hygiene treatment. Newer methods such as air polishing have changed the way dental hygiene care is provided, yet this technique has not been embraced by students in the program nor by practitioners in the workforce. Students entering the workforce tend to follow office protocol and are limited in confidence to introduce technologies learned in the curriculum. This project was designed to help students gain confidence in newer skills and encourage private practice settings to adopt newer technologies for patient care. Our program recently introduced air polishing earlier in the program before the rubber cup technique to determine if students would embrace the technology to become leading-edge professionals when they enter the marketplace. Methods: The class of 2022 was taught the traditional method of polishing in the first-year curriculum and air polishing in the second-year curriculum. The class of 2023 will be taught the air polishing method in the first-year curriculum and the traditional method of polishing in the second-year curriculum. Pre- and post-graduation survey data will be collected from both cohorts. Descriptive statistics and pre and post-paired t-tests with alpha set at .05 to compare pre and post-survey results will be used to assess data. Results: This study is currently in progress, with a completion date of October 2023. The class of 2022 completed the pre-graduation survey in the spring of 2022. The post-gradation survey will be sent out in October 2022. The class of 2023 cohort will be surveyed in the spring of 2023 and October 2023. Conclusion: Our hypothesis is students who are taught air polishing first will be more inclined to adopt that skill in private practice, thereby embracing newer technology and improving oral health care.Keywords: luggage handling system at world’s largest pilgrimage center
Procedia PDF Downloads 1032612 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing
Procedia PDF Downloads 1752611 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Authors: Yalda Zarnegarnia, Shari Messinger
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.Keywords: biomarker, correlation, familial paired design, ROC curve
Procedia PDF Downloads 2392610 Evaluation of Neonicotinoids Against Sucking Insect Pests of Cotton in Laboratory and Field Conditions
Authors: Muhammad Sufyan, Muhammad D. Gogi, Muhammad Arshad, Ahmad Nawaz, Muhammad Usman
Abstract:
Cotton (Gossypium hirsutum) universally known as silver fiber and is one of the most important cash crop of Pakistan. A wide array of pests constraints cotton production among which sucking insect pests cause serious losses. Mostly new chemistry insecticides used to control a wide variety of insect pests including sucking insect pests. In the present study efficacy of different neonicotinoids was evaluated against sucking insect pests of cotton in the field and in laboratory for red and dusky cotton bug. The experiment was conducted at Entomology Research Station, University of Agriculture Faisalabad, in a Randomized Complete Block Design (RCBD). Field trial was conducted to evaluate the efficacy of Confidence Ultra (Imidacloprid) 70% SL, Confidor (Imidacloprid) 20% SL, Kendo (Lambda cyhalothrin) 24.7 SC, Actara (Thiamethoxam) 25% WG, Forcast (Tebufenozide+ Emamectin benzoate) 8.8 EW and Timer (Emamectin benzoate) 1.9 EC at their recommended doses. The data was collected on per leaf basis of thrips, aphid, jassid and whitefly before 24 hours of spray. The post treatment data was recorded after 24, 48 and 72 hours. The fresh, non-infested and untreated cotton leaves was collected from the field and brought to the laboratory to assess the efficacy of neonicotinoids against red and dusky cotton bug. After data analysis all the insecticides were found effective against sucking pests. Confidence Ultra was highly effective against the aphid, jassid, and whitefly and gave maximum mortality, while showed non-significant results against thrips. In case of aphid plot which was treated with Kando 24.7 SC showed significant mortality after 72 hours of pesticide application. Similar trends were found in laboratory conditions with all these treatments by making different concentrations and had significant impact on dusky cotton bug and red cotton bug population after 24, 48 and 72 hours after application.Keywords: cotton, laboratory and field conditions, neonicotinoids, sucking insect pests
Procedia PDF Downloads 2422609 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models
Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton
Abstract:
Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets
Procedia PDF Downloads 4272608 Assessment of DNA Degradation Using Comet Assay: A Versatile Technique for Forensic Application
Authors: Ritesh K. Shukla
Abstract:
Degradation of biological samples in terms of macromolecules (DNA, RNA, and protein) are the major challenges in the forensic investigation which misleads the result interpretation. Currently, there are no precise methods available to circumvent this problem. Therefore, at the preliminary level, some methods are urgently needed to solve this issue. In this order, Comet assay is one of the most versatile, rapid and sensitive molecular biology technique to assess the DNA degradation. This technique helps to assess DNA degradation even at very low amount of sample. Moreover, the expedient part of this method does not require any additional process of DNA extraction and isolation during DNA degradation assessment. Samples directly embedded on agarose pre-coated microscopic slide and electrophoresis perform on the same slide after lysis step. After electrophoresis microscopic slide stained by DNA binding dye and observed under fluorescent microscope equipped with Komet software. With the help of this technique extent of DNA degradation can be assessed which can help to screen the sample before DNA fingerprinting, whether it is appropriate for DNA analysis or not. This technique not only helps to assess degradation of DNA but many other challenges in forensic investigation such as time since deposition estimation of biological fluids, repair of genetic material from degraded biological sample and early time since death estimation could also be resolved. With the help of this study, an attempt was made to explore the application of well-known molecular biology technique that is Comet assay in the field of forensic science. This assay will open avenue in the field of forensic research and development.Keywords: comet assay, DNA degradation, forensic, molecular biology
Procedia PDF Downloads 1552607 Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom
Authors: Kuan-Jen Lai, Fang-Yi Lin, Shang-Rong Huang, Yun-Zheng Zeng, Po-Chieh Hsu, Jay Wu
Abstract:
The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice.Keywords: Monte Carlo simulation, mammography, normalized glandular dose, glandularity
Procedia PDF Downloads 1892606 Earnings vs Cash Flows: The Valuation Perspective
Authors: Megha Agarwal
Abstract:
The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)
Procedia PDF Downloads 3762605 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 72604 Immunosupressive Effect of Chloroquine through the Inhibition of Myeloperoxidase
Authors: J. B. Minari, O. B. Oloyede
Abstract:
Polymorphonuclear neutrophils (PMNs) play a crucial role in a variety of infections caused by bacteria, fungi, and parasites. Indeed, the involvement of PMNs in host defence against Plasmodium falciparum is well documented both in vitro and in vivo. Many of the antimalarial drugs such as chloroquine used in the treatment of human malaria significantly reduce the immune response of the host in vitro and in vivo. Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil which plays a crucial role in its function. This study was carried out to investigate the effect of chloroquine on the enzyme. In investigating the effects of the drug on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that chloroquine is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.03 mM. Partition ratio estimation showed that 40 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of chloroquine. The influence of pH on the effect of chloroquine on the enzyme showed significant inhibition of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that chloroquine caused a non-competitive inhibition with an inhibition constant Ki of 0.27mM. The results obtained from this study shows that chloroquine is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is therefore considered that the inhibition of myeloperoxidase in the presence of chloroquine as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent immunosuppression of the host defence system against secondary infections.Keywords: myeloperoxidase, chloroquine, inhibition, neutrophil, immune
Procedia PDF Downloads 3742603 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1232602 Effect Analysis of an Improved Adaptive Speech Noise Reduction Algorithm in Online Communication Scenarios
Authors: Xingxing Peng
Abstract:
With the development of society, there are more and more online communication scenarios such as teleconference and online education. In the process of conference communication, the quality of voice communication is a very important part, and noise may cause the communication effect of participants to be greatly reduced. Therefore, voice noise reduction has an important impact on scenarios such as voice calls. This research focuses on the key technologies of the sound transmission process. The purpose is to maintain the audio quality to the maximum so that the listener can hear clearer and smoother sound. Firstly, to solve the problem that the traditional speech enhancement algorithm is not ideal when dealing with non-stationary noise, an adaptive speech noise reduction algorithm is studied in this paper. Traditional noise estimation methods are mainly used to deal with stationary noise. In this chapter, we study the spectral characteristics of different noise types, especially the characteristics of non-stationary Burst noise, and design a noise estimator module to deal with non-stationary noise. Noise features are extracted from non-speech segments, and the noise estimation module is adjusted in real time according to different noise characteristics. This adaptive algorithm can enhance speech according to different noise characteristics, improve the performance of traditional algorithms to deal with non-stationary noise, so as to achieve better enhancement effect. The experimental results show that the algorithm proposed in this chapter is effective and can better adapt to different types of noise, so as to obtain better speech enhancement effect.Keywords: speech noise reduction, speech enhancement, self-adaptation, Wiener filter algorithm
Procedia PDF Downloads 582601 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 4562600 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template
Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou
Abstract:
The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation
Procedia PDF Downloads 5402599 Full-Field Estimation of Cyclic Threshold Shear Strain
Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca
Abstract:
Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow
Procedia PDF Downloads 2342598 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML
Procedia PDF Downloads 1292597 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 2592596 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 3022595 OpenMP Parallelization of Three-Dimensional Magnetohydrodynamic Code FOI-PERFECT
Authors: Jiao F. Huang, Shi Chen, Shu C. Duan, Gang H. Wang
Abstract:
Due to its complex spatial structure as well as dynamic temporal evolution, an analytic solution of an X-pinch process is out of question, and numerical simulation becomes an important tool in X-pinch studies. Intrinsically, simulations of X-pinch are three-dimensional (3D) because of the specific structure of its load. Furthermore, in order to resolve both its μm-scales and ns-durations, fine spatial mesh grid and short time steps are usually adopted. The resulting large computational scales make the parallelization of codes a vital problem to be solved if any practical simulations are to be carried out. In this work, we report OpenMP parallelization of our 3D magnetohydrodynamic (MHD) code FOI-PERFECT. Results of test runs confirm that computational efficiency has been improved after parallelization, and both the sequential and parallel versions give the same physical results under the same initial conditions.Keywords: MHD simulation, OpenMP, parallelization, X-pinch
Procedia PDF Downloads 3402594 Correlation Analysis between the Corporate Governance and Financial Performance of Banking Sectors Using Parameter Estimation
Authors: Vishwa Nath Maurya, Rama Shanker Sharma, Saad Talib Hasson Aljebori, Avadhesh Kumar Maurya, Diwinder Kaur Arora
Abstract:
Present paper deals with problems of determining the relationship between the variables of corporate governance and financial performance of Islamic banks. Here, we dealt with the corporate governance in the banking sector, where increasing the importance of corporate governance, due to their special nature, as the bankruptcy of banks affects not only the relevant parties from customers, depositors and lenders, but also affect financial stability and then the economy as a whole. Through this paper we dealt to the specificity of governance in Islamic banks, which face double governance: Anglo-Saxon governance system and Islamic governance system. In addition, we focused our attention to measure the impact of corporate governance variables on financial performance through an empirical study on a sample of Islamic banks during the period 2005-2012 in the GCC region. Our present study implies that there is a very strong relationship between the variables of governance and financial performance of Islamic banks, where there is a positive relationship between return on assets and the composition of the Board of Directors, the size of the Board of Directors, the number of committees in the Council, as well as the number of members of the Sharia Supervisory Board, while it is clear that there is a negative relationship between return on assets and concentration ownership.Keywords: correlation analysis, parametric estimation, corporate governance, financial performance, financial stability, conventional banks, bankruptcy, Islamic governance system
Procedia PDF Downloads 5162593 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4902592 Online Faculty Professional Development: An Approach to the Design Process
Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova
Abstract:
Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.Keywords: community of practice, customized, faculty development, inclusive design
Procedia PDF Downloads 1752591 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations
Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh
Abstract:
Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy
Procedia PDF Downloads 972590 Atmospheric CO2 Capture via Temperature/Vacuum Swing Adsorption in SIFSIX-3-Ni
Authors: Eleni Tsalaporta, Sebastien Vaesen, James M. D. MacElroy, Wolfgang Schmitt
Abstract:
Carbon dioxide capture has attracted the attention of many governments, industries and scientists over the last few decades, due to the rapid increase in atmospheric CO2 composition, with several studies being conducted in this area over the last few years. In many of these studies, CO2 capture in complex Pressure Swing Adsorption (PSA) cycles has been associated with high energy consumption despite the promising capture performance of such processes. The purpose of this study is the economic capture of atmospheric carbon dioxide for its transformation into a clean type of energy. A single column Temperature /Vacuum Swing Adsorption (TSA/VSA) process is proposed as an alternative option to multi column Pressure Swing Adsorption (PSA) processes. The proposed adsorbent is SIFSIX-3-Ni, a newly developed MOF (Metal Organic Framework), with extended CO2 selectivity and capacity. There are three stages involved in this paper: (i) SIFSIX-3-Ni is synthesized and pelletized and its physical and chemical properties are examined before and after the pelletization process, (ii) experiments are designed and undertaken for the estimation of the diffusion and adsorption parameters and limitations for CO2 undergoing capture from the air; and (iii) the CO2 adsorption capacity and dynamical characteristics of SIFSIX-3-Ni are investigated both experimentally and mathematically by employing a single column TSA/VSA, for the capture of atmospheric CO2. This work is further supported by a technical-economical study for the estimation of the investment cost and the energy consumption of the single column TSA/VSA process. The simulations are performed using gProms.Keywords: carbon dioxide capture, temperature/vacuum swing adsorption, metal organic frameworks, SIFSIX-3-Ni
Procedia PDF Downloads 2632589 Working Capital Management Effectiveness
Authors: Asif Iqbal
Abstract:
Working capital management has its effect on liquidity as well as on profitability of a firm. In this research we have selected a sample of 100 respondents whose firms are listed on Karachi stock exchange. We have studied the effect of different variable s of working capital management. We find that organizations throughout the world as well as in Pakistan have to give immense recognition to the working capital management as it is an effective thing from their long term perspective especially to their shareholders to have a firm confidence over the companies for investment purpose.Keywords: working capital management, Karachi stock exchange, shareholders, capital management
Procedia PDF Downloads 5752588 Estimation of World Steel Production by Process
Authors: Reina Kawase
Abstract:
World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance
Procedia PDF Downloads 450