Search results for: neural tube defects
2235 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models
Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo
Abstract:
Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps
Procedia PDF Downloads 982234 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms
Authors: Henni Mansour Abdelwaheb
Abstract:
This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties
Procedia PDF Downloads 752233 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating
Procedia PDF Downloads 5282232 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3482231 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 562230 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 3392229 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1502228 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3242227 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1532226 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2112225 Downscaling Daily Temperature with Neuroevolutionary Algorithm
Authors: Min Shi
Abstract:
State of the art research with Artificial Neural Networks for the downscaling of General Circulation Models (GCMs) mainly uses back-propagation algorithm as a training approach. This paper introduces another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical downscaling by generating temperature estimates at interior points given information from a lattice of surrounding locations. The results of our experiments indicate that NE algorithms can be efficient alternative downscaling methods for daily temperatures.Keywords: temperature, downscaling, artificial neural networks, evolutionary algorithms
Procedia PDF Downloads 3492224 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1322223 Fluid Prescribing Post Laparotomies
Authors: Gusa Hall, Barrie Keeler, Achal Khanna
Abstract:
Introduction: NICE guidelines have highlighted the consequences of IV fluid mismanagement. The main aim of this study was to audit fluid prescribing post laparotomies to identify if fluids were prescribed in accordance to NICE guidelines. Methodology: Retrospective database search of eight specific laparotomy procedures (colectomy right and left, Hartmann’s procedure, small bowel resection, perforated ulcer, abdominal perineal resection, anterior resection, pan proctocolectomy, subtotal colectomy) highlighted 29 laparotomies between April 2019 and May 2019. Two of 29 patients had secondary procedures during the same admission, n=27 (patients). Database case notes were reviewed for date of procedure, length of admission, fluid prescribed and amount, nasal gastric tube output, daily bloods results for electrolytes sodium and potassium and operational losses. Results: n=27 based on 27 identified patients between April 2019 – May 2019, 93% (25/27) received IV fluids, only 19% (5/27) received the correct IV fluids in accordance to NICE guidelines, 93% (25/27) who received IV fluids had the correct electrolytes levels (sodium & potassium), 100% (27/27) patients received blood tests (U&E’s) for correct electrolytes levels. 0% (0/27) no documentation on operational losses. IV fluids matched nasogastric tube output in 100% (3/3) of the number of patients that had a nasogastric tube in situ. Conclusion: A PubMed database literature review on barriers to safer IV prescribing highlighted educational interventions focused on prescriber knowledge rather than how to execute the prescribing task. This audit suggests IV fluids post laparotomies are not being prescribed consistently in accordance to NICE guidelines. Surgical management plans should be clearer on IV fluids and electrolytes requirements for the following 24 hours after the plan has been initiated. In addition, further teaching and training around IV prescribing is needed together with frequent surgical audits on IV fluid prescribing post-surgery to evaluate improvements.Keywords: audit, IV Fluid prescribing, laparotomy, NICE guidelines
Procedia PDF Downloads 1202222 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3572221 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization
Procedia PDF Downloads 1522220 Acute Neurophysiological Responses to Resistance Training; Evidence of a Shortened Super Compensation Cycle and Early Neural Adaptations
Authors: Christopher Latella, Ashlee M. Hendy, Dan Vander Westhuizen, Wei-Peng Teo
Abstract:
Introduction: Neural adaptations following resistance training interventions have been widely investigated, however the evidence regarding the mechanisms of early adaptation are less clear. Understanding neural responses from an acute resistance training session is pivotal in the prescription of frequency, intensity and volume in applied strength and conditioning practice. Therefore the primary aim of this study was to investigate the time course of neurophysiological mechanisms post training against current super compensation theory, and secondly, to examine whether these responses reflect neural adaptations observed with resistance training interventions. Methods: Participants (N=14) completed a randomised, counterbalanced crossover study comparing; control, strength and hypertrophy conditions. The strength condition involved 3 x 5RM leg extensions with 3min recovery, while the hypertrophy condition involved 3 x 12 RM with 60s recovery. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were used to measure excitability of the central and peripheral neural pathways, and maximal voluntary contraction (MVC) to quantify strength changes. Measures were taken pre, immediately post, 10, 20 and 30 mins and 1, 2, 6, 24, 48, 72 and 96 hrs following training. Results: Significant decreases were observed at post, 10, 20, 30 min, 1 and 2 hrs for both training groups compared to control group for force, (p <.05), maximal compound wave; (p < .005), silent period; (p < .05). A significant increase in corticospinal excitability; (p < .005) was observed for both groups. Corticospinal excitability between strength and hypertrophy groups was near significance, with a large effect (η2= .202). All measures returned to baseline within 6 hrs post training. Discussion: Neurophysiological mechanisms appear to be significantly altered in the period 2 hrs post training, returning to homeostasis by 6 hrs. The evidence suggests that the time course of neural recovery post resistance training occurs 18-40 hours shorter than previous super compensation models. Strength and hypertrophy protocols showed similar response profiles with current findings suggesting greater post training corticospinal drive from hypertrophy training, despite previous evidence that strength training requires greater neural input. The increase in corticospinal drive and decrease inl inhibition appear to be a compensatory mechanism for decreases in peripheral nerve excitability and maximal voluntary force output. The changes in corticospinal excitability and inhibition are akin to adaptive processes observed with training interventions of 4 wks or longer. It appears that the 2 hr recovery period post training is the most influential for priming further neural adaptations with resistance training. Secondly, the frequency of prescribed resistance sessions can be scheduled closer than previous super compensation theory for optimal strength gains.Keywords: neural responses, resistance training, super compensation, transcranial magnetic stimulation
Procedia PDF Downloads 2832219 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2172218 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 2932217 Study of Congenital Malformations in Newborns in the Pediatrics and Neonatology Department in the Wilaya of Batna, Algeria
Authors: Belhadi Kamilia, Bendaoud Fadhila, Zidani Abla
Abstract:
Birth defects are morphological abnormalities and functionally represent the main causes of morbidity and neonatal mortality. The aim was to analyze a number of maternal and newborn traits, assess the main causes and risk factors of abnormalities and describe the clinical aspects and different types of birth defects at the maternity of Batna. Our rate of congenital malformations is 19% of hospitalized newborns; mono malformations are the most common, mainly 28% neurological malformations predominated by Spina Bifida and hydrocephalus. Poly malformations accounted for only 15% of our study. 39,61% of newborns are premature. We found a male predominance. The sex ratio is 1.33 male to one girl, most by mothers over 35. The analysis of the pathological history has shown that the diseases encountered in mothers are pregnant HTA and diabetes, these are the most common diseases with a percentage of (19%, and 21%). The percentage of people who use medicine is 28%. In terms of diagnosis, prenatal ultrasounds are performed in 12% of cases, and the death rate is often fairly high at 45%. Congenital malformations remain a problem in terms of treatment and prognosis; this will make it possible to investigate other factors, to better understand the causes of congenital malformations and to develop effective prevention and treatment strategies.Keywords: malformation, congenital, newborn, risk factors, Wilaya of Batna, Algeria.
Procedia PDF Downloads 182216 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1032215 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 3392214 Collapse Capacity Assessment of Inelastic Structures under Seismic Sequences
Authors: Shahrzad Mohammadi, Ghasem Boshrouei Sharq
Abstract:
All seismic design codes are based on the determination of the design earthquake without taking into account the effects of aftershocks in the design practice. In regions with a high level of seismicity, the occurrence of several aftershocks of various magnitudes and different time lags is very likely. This research aims to estimate the collapse capacity of a 10-story steel bundled tube moment frame subjected to as-recorded seismic sequences. The studied structure is designed according to the seismic regulations of the fourth revision of the Iranian code of practice for the seismic-resistant design of buildings (Code No.2800). A series of incremental dynamic analyses (IDA) is performed up to the collapse level of the intact structure. Then, in order to demonstrate the effects of aftershock events on the collapse vulnerability of the building, aftershock IDA analyzes are carried out. To gain deeper insight, collapse fragility curves are developed and compared for both series. Also, a study on the influence of various ground motion characteristics on collapse capacity is carried out. The results highlight the importance of considering the decisive effects of aftershocks in seismic codes due to their contribution to the occurrence of collapse.Keywords: IDA, aftershock, bundled tube frame, fragility assessment, GM characteristics, as-recorded seismic sequences
Procedia PDF Downloads 1412213 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4012212 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 1782211 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique
Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi
Abstract:
The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)
Procedia PDF Downloads 1952210 Naturalistic Neuroimaging: From Film to Learning Disorders
Authors: Asha Dukkipati
Abstract:
Cognitive neuroscience explores neural functioning and aberrant brain activity during cognitive and perceptual tasks. Neurocinematics is a subfield of cognitive neuroscience that observes neural responses of individuals watching a film to see similarities and differences between individuals. This method is typically used for commercial use, allowing directors and filmmakers to produce better visuals and increasing their results in the box office. However, neurocinematics is increasingly becoming a common tool for neuroscientists interested in studying similar patterns of brain activity across viewers outside of the film industry. In this review, it argue that neurocinematics provides an easy, naturalistic approach for studying and diagnosing learning disorders. While the neural underpinnings of developmental learning disorders are traditionally assessed with well-established methods like EEG and fMRI that target particular cognitive domains, such as simple visual and attention tasks, there is initial evidence and theoretical background in support of neurocinematics as a biomarker for learning differences. By using ADHD, dyslexia, and autism as case studies, this literature review discusses the potential advantages of neurocinematics as a new tool for learning disorders research.Keywords: behavioral and social sciences, neuroscience, neurocinematics, biomarkers, neurobehavioral disorders
Procedia PDF Downloads 962209 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network
Authors: Prateeksha Mahamallik, Anjali Pal
Abstract:
In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology
Procedia PDF Downloads 2542208 Reconstruction of Complex Post Oncologic Maxillectomy Defects
Authors: Vinay Kant Shankhdhar
Abstract:
Purpose: Maxillary defects are three dimensional and require complex bone and soft tissue reconstruction. Maxillary reconstruction using fibula osteocutaneous flaps in situation requiring orbital floor, orbital wall, palatal defects, and external skin, all at the same time require special planning and multiple osteotomies. We tried to improvise our reconstruction using multiple osteotomies and skin paddle designs for fibula and Flexor Hallucis Longus Muscle. This study aims at discussing the planning and outcome in complex maxillary reconstructions using fibula flaps and soft tissue flaps with or without bone grafts. Material and Methods: From 2011 to 2017 a total of 129 Free fibula flaps were done, 67 required two or more struts, 164 Anterolateral Thigh Flaps, 11 Deep Inferior Epigastric Artery perforator flaps and 3 vertical rectus abdominis muscle flaps with iliac crest bone graft. The age range was 2 to 70 years. The reconstruction was evaluated based on the post-operative rehabilitation including orbital support (prevention of diplopia), oral diet, speech and cosmetic appearance. Results: The follow- up is from 5 years to 1 year. In this series, we observed that the common complications were the de-vascularisation of most distal segment of osteotomised fibula and native skin necrosis. Commonest area of breakdown is the medial canthal region. Plate exposure occurs most commonly at the pyriform sinus. There was extrusion of one non-vascularized bone graft. All these complications were noticed post-radiotherapy. Conclusions: The use of free fibula osteocutaneous flap gives very good results when only alveolar reconstruction is required. The reconstruction of orbital floor with extensive skin loss with post operative radiotherapy has maximum complication rate in long term follow up. A soft tissue flap with non vascularized bone graft may be the best option in such cases.Keywords: maxilla reconstruction, fibula maxilla, post cancer maxillary reconstruction
Procedia PDF Downloads 1342207 Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics
Authors: Mohamed Abdelrahman Abdalla
Abstract:
Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions.Keywords: communicating hydrocephalus, functions of the ventricles, idiopathic intracranial hypertension physics of CSF
Procedia PDF Downloads 1062206 Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)
Authors: Ling-Ling E., Hong-Chen Liu, Dong-Sheng Wang, Fang Su, Xia Wu, Zhan-Ping Shi, Yan Lv, Jia-Zhu Wang
Abstract:
Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects.Keywords: nano-hydroxyapatite/collagen/poly (L-lactide), dental pulp stem cell, recombinant human bone morphogenetic protein, bone tissue engineering, alveolar bone
Procedia PDF Downloads 400