Search results for: hydraulic diameters
142 The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers
Authors: Antoifi Abdoulhalik, Ashraf Ahmed
Abstract:
Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario.Keywords: heterogeneous coastal aquifers, laboratory experiments, physical barriers, seawater intrusion control
Procedia PDF Downloads 248141 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee
Abstract:
Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander
Procedia PDF Downloads 145140 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria
Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar
Abstract:
The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.Keywords: earthquake, modeling, liquefaction potential, laboratory investigations
Procedia PDF Downloads 351139 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 144138 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance
Authors: Aadila Cayenne, Hinrich Uellendahl
Abstract:
Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima
Procedia PDF Downloads 150137 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman
Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah
Abstract:
The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system
Procedia PDF Downloads 44136 3-Dimensional Contamination Conceptual Site Model: A Case Study Illustrating the Multiple Applications of Developing and Maintaining a 3D Contamination Model during an Active Remediation Project on a Former Urban Gasworks Site
Authors: Duncan Fraser
Abstract:
A 3-Dimensional (3D) conceptual site model was developed using the Leapfrog Works® platform utilising a comprehensive historical dataset for a large former Gasworks site in Fitzroy, Melbourne. The gasworks had been constructed across two fractured geological units with varying hydraulic conductivities. A Newer Volcanic (basaltic) outcrop covered approximately half of the site and was overlying a fractured Melbourne formation (Siltstone) bedrock outcropping over the remaining portion. During the investigative phase of works, a dense non-aqueous phase liquid (DNAPL) plume (coal tar) was identified within both geological units in the subsurface originating from multiple sources, including gasholders, tar wells, condensers, and leaking pipework. The first stage of model development was undertaken to determine the horizontal and vertical extents of the coal tar in the subsurface and assess the potential causality between potential sources, plume location, and site geology. Concentrations of key contaminants of interest (COIs) were also interpolated within Leapfrog to refine the distribution of contaminated soils. The model was subsequently used to develop a robust soil remediation strategy and achieve endorsement from an Environmental Auditor. A change in project scope, following the removal and validation of the three former gasholders, necessitated the additional excavation of a significant volume of residual contaminated rock to allow for the future construction of two-story underground basements. To assess financial liabilities associated with the offsite disposal or thermal treatment of material, the 3D model was updated with three years of additional analytical data from the active remediation phase of works. Chemical concentrations and the residual tar plume within the rock fractures were modelled to pre-classify the in-situ material and enhance separation strategies to prevent the unnecessary treatment of material and reduce costs.Keywords: 3D model, contaminated land, Leapfrog, remediation
Procedia PDF Downloads 130135 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control
Procedia PDF Downloads 160134 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 72133 Pilot Scale Investigation on the Removal of Pollutants from Secondary Effluent to Meet Botswana Irrigation Standards Using Roughing and Slow Sand Filters
Authors: Moatlhodi Wise Letshwenyo, Lesedi Lebogang
Abstract:
Botswana is an arid country that needs to start reusing wastewater as part of its water security plan. Pilot scale slow sand filtration in combination with roughing filter was investigated for the treatment of effluent from Botswana International University of Science and Technology to meet Botswana irrigation standards. The system was operated at hydraulic loading rates of 0.04 m/hr and 0.12 m/hr. The results show that the system was able to reduce turbidity from 262 Nephelometric Turbidity Units to a range between 18 and 0 Nephelometric Turbidity Units which was below 30 Nephelometric Turbidity Units threshold limit. The overall efficacy ranged between 61% and 100%. Suspended solids, Biochemical Oxygen Demand, and Chemical Oxygen Demand removal efficiency averaged 42.6%, 45.5%, and 77% respectively and all within irrigation standards. Other physio-chemical parameters were within irrigation standards except for bicarbonate ion which averaged 297.7±44 mg L-1 in the influent and 196.22±50 mg L-1 in the effluent which was above the limit of 92 mg L-1, therefore averaging a reduction of 34.1% by the system. Total coliforms, fecal coliforms, and Escherichia coli in the effluent were initially averaging 1.1 log counts, 0.5 log counts, and 1.3 log counts respectively compared to corresponding influent log counts of 3.4, 2.7 and 4.1, respectively. As time passed, it was observed that only roughing filter was able to reach reductions of 97.5%, 86% and 100% respectively for faecal coliforms, Escherichia coli, and total coliforms. These organism numbers were observed to have increased in slow sand filter effluent suggesting multiplication in the tank. Water quality index value of 22.79 for the physio-chemical parameters suggests that the effluent is of excellent quality and can be used for irrigation purposes. However, the water quality index value for the microbial parameters (1820) renders the quality unsuitable for irrigation. It is concluded that slow sand filtration in combination with roughing filter is a viable option for the treatment of secondary effluent for reuse purposes. However, further studies should be conducted especially for the removal of microbial parameters using the system.Keywords: irrigation, slow sand filter, turbidity, wastewater reuse
Procedia PDF Downloads 152132 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms
Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan
Abstract:
Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)
Procedia PDF Downloads 330131 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery
Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper
Abstract:
Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.Keywords: acoustics, drug delivery, liposomes, surface acoustic waves
Procedia PDF Downloads 122130 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation
Authors: Matthias Leitner, Gernot Pottlacher
Abstract:
Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion
Procedia PDF Downloads 217129 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 131128 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 60127 Seismic Response of Structure Using a Three Degree of Freedom Shake Table
Authors: Ketan N. Bajad, Manisha V. Waghmare
Abstract:
Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed
Procedia PDF Downloads 137126 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise
Authors: Rahman Davtalab
Abstract:
Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise
Procedia PDF Downloads 183125 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 130124 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions
Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio
Abstract:
The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins
Procedia PDF Downloads 36123 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 313122 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles
Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska
Abstract:
In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2
Procedia PDF Downloads 266121 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.Keywords: contamination, DRASTIC, groundwater, vulnerability, model
Procedia PDF Downloads 82120 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain
Procedia PDF Downloads 199119 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 178118 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments
Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez
Abstract:
Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production
Procedia PDF Downloads 114117 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis
Abstract:
Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment
Procedia PDF Downloads 152116 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context
Authors: Mohamed Redha Menani
Abstract:
The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.Keywords: transboundary water resources, SASS, governance, climatic changes
Procedia PDF Downloads 81115 Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering
Authors: Shuang Luo, Er-Xiang Song
Abstract:
Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model.Keywords: transient seepage, unbounded domain, artificial boundary condition, numerical simulation
Procedia PDF Downloads 293114 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)
Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi
Abstract:
The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal
Procedia PDF Downloads 112113 Analysis and Optimized Design of a Packaged Liquid Chiller
Authors: Saeed Farivar, Mohsen Kahrom
Abstract:
The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.Keywords: optimization, packaged liquid chiller, performance, simulation
Procedia PDF Downloads 277