Search results for: hybrid ferro fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3787

Search results for: hybrid ferro fluid

3007 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques

Procedia PDF Downloads 395
3006 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine

Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam

Abstract:

Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.

Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems

Procedia PDF Downloads 68
3005 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis

Authors: Deng Zengming, Wang Mingjiang

Abstract:

As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.

Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis

Procedia PDF Downloads 234
3004 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone

Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl

Abstract:

In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.

Keywords: hydrocyclone, RSM Model, CFD, copper industry

Procedia PDF Downloads 548
3003 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance

Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang

Abstract:

According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.

Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance

Procedia PDF Downloads 161
3002 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 275
3001 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions

Authors: Ahmed Khalil

Abstract:

Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.

Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy

Procedia PDF Downloads 118
3000 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 494
2999 Host Responses in Peri-Implant Tissue in Comparison to Periodontal Tissue

Authors: Raviporn Madarasmi, Anjalee Vacharaksa, Pravej Serichetaphongse

Abstract:

The host response in peri-implant tissue may differ from that in periodontal tissue in a healthy individual. The purpose of this study is to investigate the expression of inflammatory cytokines in peri-implant crevicular fluid (PICF) from single implant with different abutment types in comparison to healthy periodontal tissue. 19 participants with healthy implants and teeth were recruited according to inclusion and exclusion criteria. PICF and gingival crevicular fluid (GCF) was collected using sterile paper points. The expression level of inflammatory cytokines including IL-1α, IL-1β, TNF-α, IFN-γ, IL-6, and IL-8 was assessed using enzyme-linked immunosorbent assay (ELISA). Paired t test was used to compare the expression levels of inflammatory cytokines around natural teeth and peri-implant in PICF and GCF of the same individual. The Independent t-test was used to compare the expression levels of inflammatory cytokines in PICF from titanium and UCLA abutment. Expression of IL-6, TNF-α, and IFN-γ in PICF was not statistically different from GCF among titanium and UCLA abutment group. However, the level of IL-1α in the PICF from the implants with UCLA abutment was significantly higher than GCF (P=0.030). In addition, the level of IL-1β in PICF from the implants with titanium abutment was significantly higher than GCF (P=0.032). When different abutment types was compared, IL-8 expression in PICF from implants with UCLA abutment was significantly higher than titanium abutment (P=0.003).

Keywords: abutment, dental implant, gingival crevicular fluid and peri-implant crevicular fluid

Procedia PDF Downloads 168
2998 Using Computational Fluid Dynamics to Model and Design a Preventative Application for Strong Wind

Authors: Ming-Hwi Yao, Su-Szu Yang

Abstract:

Typhoons are one of the major types of disasters that affect Taiwan each year and that cause severe damage to agriculture. Indeed, the damage exacted during a typical typhoon season can be up to $1 billion, and is responsible for nearly 75% of yearly agricultural losses. However, there is no consensus on how to reduce the damage caused by the strong winds and heavy precipitation engendered by typhoons. One suggestion is the use of windbreak nets, which are a low-cost and easy-to-use disaster mitigation strategy for crop production. In the present study, we conducted an evaluation to determine the optimal conditions of a windbreak net by using a computational fluid dynamics (CFD) model. This model may be used as a reference for crop protection. The results showed that CFD simulation validated windbreak nets of different mesh sizes and heights in the experimental area; thus, CFD is an efficient tool for evaluating the effectiveness of windbreak nets. Specifically, the effective wind protection length and height were found to be 6 and 1.3 times the length and height of the windbreak net, respectively. During a real typhoon, maximum wind gusts of 18 m s-1 can be reduced to 4 m s-1 by using a windbreak net that has a 70% blocking rate. In short, windbreak nets are significantly effective in protecting typhoon-affected areas.

Keywords: computational fluid dynamics, disaster, typhoon, windbreak net

Procedia PDF Downloads 173
2997 The Influence of Viscosifier Concentration on Rheological Properties of Invert Emulsion Mud

Authors: Suzan Ibrahim

Abstract:

Oil-based muds are the most regularly used rotary drilling methods in the oil and gas industry. However, they have a negative impact on the environment, which leads to restrictions of their application in many countries of the world. Consequently, looking for new eco-friendly alternative formulations of oil-based drilling fluids for the exploration of troublesome formations. As one of the developments of Novel formulation of environmentally friendly drilling fluids and investigation of the formulation for jatropha oil-based drilling fluid samples at different concentrations of viscosifiers such as low viscosity polyanionic cellulose (PAC- LV), high viscosity polyanionic cellulose (PAC-V) and local Egyptian bentonite. The oil-water ratio was taken as 70:30, which is beneficial in producing a low fluid loss. 15 drilling fluid samples were formulated different concentrations of bentonite, PAC- LV and PAC-V individually and their mud density, rheological properties, electrical stability and filtration loss properties were determined. The rheological performance showed at higher concentrations of viscosifier, the trend of viscosity increment of PAC performed in a similar way to bentonite. The best result of electrical stability by using the lowest concentration of viscosifier was achieved with PAC-V. The lowest fluid loss volumes were obtained by using the highest concentrations (4 g) of viscosifiers. Mud cake thickness of samples increased by using viscosifiers; however, a lower range was achieved compared to API specification. From the overall experiment, it can be concluded that as the concentrations of viscosifier increase, the viscosity trend increase in a similar way to both PAC-V and bentonite. But we must note that the PAC-V is a more environmentally friendly additive and a renewable resource, cheaper than bentonite and improves properties of eco-friendly OBMs well. It is a preferable choice for oil-based drilling fluids.

Keywords: invert emulsion mud, oil-based mud, rheological properties, viscosifier

Procedia PDF Downloads 149
2996 Atmospheric Fluid Bed Gasification of Different Biomass Fuels

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper shortly describes biomass types and growing amount in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequent utilizing biomass types and results of their gasification testing. There was chosen sixteen the most exploited "Czech" woody plants and grasses. There were determinated raw, element and biochemical analysis, basic calorimetric values, ash composition and ash characteristic temperatures. After that, each biofuel was tested by fluid bed gasification. The essential part of this paper yields results of chosen biomass types gasification experiments. Partly, there are described an operating conditions in detail with accentuation of individual fuels particularities partly, there is summarized gas composition and impurities content. The essential difference was determined mainly between woody plants and grasses both from point of view of the operating conditions and gas quality. The woody plants was evaluated as more suitable fuels for fluid bed gasifiers. This results will be able to significantly help with decision which energy plants are suitable for growing or with optimal biomass-treatment technology selection.

Keywords: biomass growing, biomass types, gasification, biomass fuels

Procedia PDF Downloads 554
2995 Thermal Analysis of Automobile Radiator Using Nanofluids

Authors: S. Sumanth, Babu Rao Ponangi, K. N. Seetharamu

Abstract:

As the technology is emerging day by day, there is a need for some better methodology which will enhance the performance of radiator. Nanofluid is the one area which has promised the enhancement of the radiator performance. Currently, nanofluid has got a well effective solution for enhancing the performance of the automobile radiators. Suspending the nano sized particle in the base fluid, which has got better thermal conductivity value when compared to a base fluid, is preferably considered for nanofluid. In the current work, at first mathematical formulation has been carried out, which will govern the performance of the radiator. Current work is justified by plotting the graph for different parameters. Current work justifies the enhancement of radiator performance using nanofluid.

Keywords: nanofluid, radiator performance, graphene, gamma aluminium oxide (γ-Al2O3), titanium dioxide (TiO2)

Procedia PDF Downloads 232
2994 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum

Authors: Won Yeol Choi, Sangmo Kang

Abstract:

The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.

Keywords: fluid viscosity, hydrodynamics, similitude, propulsive force

Procedia PDF Downloads 333
2993 Behavioral Changes and Gill Histopathological Alterations of Red Hybrid Tilapia (Oreochromis sp.) Exposed to Glyphosate Herbicide

Authors: Abubakar Muhammad Umar, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Abd Shukor

Abstract:

Glyphosate [N-(phosphonomethyl) glycine] is among the most broadly and generally recognized broad-spectrum herbicides used in agriculture due to its low cost and effectiveness in weed management. The pollution of glyphosate in the aquatic environment can be via water run-off from agricultural lands, or by spray drift, aerial spraying or due to industrial discharge, which may be seen as a threat to aquatic biota. Fish is one of the best organisms to study the toxicological aspects of glyphosate. A 49 days experiment was conducted under laboratory condition to ascertain the effects of technical grade glyphosate on behaviour and histopathological conditions in the gills of red hybrid tilapia using light inverted microscope. Air gasping, erratic swimming, fin movement, mucus secretion, hemorrhages and loss of scales were observed as behavioural changes in the exposed fish. There was no any histopathological complication observed in the gill of the control fish, but various level of alterations were seen in the gills of the fish exposed to glyphosate herbicide. These include lifting of primary lamella, congestion of secondary lamella as well as hyperplasia in both primary and secondary gill lamella and hypertrophy of secondary gill lamella. Based on the findings of this study, glyphosate herbicide exerts behavioural and histopathological changes in the gill of red hybrid tilapia, and therefore the fish is considered as good bioindicator in aquatic environment monitoring. Excessive usage of glyphosate herbicide near aquatic habitats should be discouraged.

Keywords: glyphosate, behavioral, histopathological, tilapia

Procedia PDF Downloads 10
2992 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation

Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran

Abstract:

Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.

Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning

Procedia PDF Downloads 478
2991 Assessing Students’ Readiness for an Open and Distance Learning Higher Education Environment

Authors: Upasana G. Singh, Meera Gungea

Abstract:

Learning is no more confined to the traditional classroom, teacher, and student interaction. Many universities offer courses through the Open and Distance Learning (ODL) mode, attracting a diversity of learners in terms of age, gender, and profession to name a few. The ODL mode has surfaced as one of the famous sought-after modes of learning, allowing learners to invest in their educational growth without hampering their personal and professional commitments. This mode of learning, however, requires that those who ultimately choose to adopt it must be prepared to undertake studies through such medium. The purpose of this research is to assess whether students who join universities offering courses through the ODL mode are ready to embark and study within such a framework. This study will be helpful to unveil the challenges students face in such an environment and thus contribute to developing a framework to ease adoption and integration into the ODL environment. Prior to the implementation of e-learning, a readiness assessment is essential for any institution that wants to adopt any form of e-learning. Various e-learning readiness assessment models have been developed over the years. However, this study is based on a conceptual model for e-Learning Readiness Assessment which is a ‘hybrid model’. This hybrid model consists of 4 main parameters: 1) Technological readiness, 2) Culture readiness, 3) Content readiness, and 4) Demographics factors, with 4 sub-areas, namely, technology, innovation, people and self-development. The model also includes the attitudes of users towards the adoption of e-learning as an important aspect of assessing e-learning readiness. For this study, some factors and sub-factors of the hybrid model have been considered and adapted, together with the ‘Attitude’ component. A questionnaire was designed based on the models and students where the target population were students enrolled at the Open University of Mauritius, in undergraduate and postgraduate courses. Preliminary findings indicate that most (68%) learners have an average knowledge about ODL form of learning, despite not many (72%) having previous experience with ODL. Despite learning through ODL 74% of learners preferred hard copy learning material and 48% found difficulty in reading learning material on electronic devices.

Keywords: open learning, distance learning, student readiness, a hybrid model

Procedia PDF Downloads 95
2990 Evaluation of Drought Tolerant Sunflower Hybrids Indicated Their Broad Adaptability Under Stress Environment

Authors: Saeed Rauf

Abstract:

Purpose: Drought stress is a major production constraint in sunflowers and causes yield losses under tropical and subtropical environments having high evapo-tranpirational losses. Given the consequences, three trials were designed to evaluate drought-resistant sunflower hybrids. Research Methods: Field trials were conducted under a split-plot arrangement with 17 hybrids and two contrasting regimes at Sargodha, Pakistan and 7 hybrids at Karj, Iran. Water stress condition was simulated by holding water in a stress regime. Hybrids were also screened against five levels of osmotic-ally induced stress, i.e. 0-15%, under a completely randomized design with 3 replications. Findings: Hybrids H1 (C.112.× RH.344) and H3 (C.112.× RSIN.82) showed the highest seed yield ha-1 and early flowering at Karj Iran. Commercial hybrid had the highest CTD (18.2°C) followed by C112 × RH.344 (17.29 °C). Hybrid C.250 × R.SIN.82 had the highest seed yield (m-2), followed by C.112 × RH.365 and C.124 × RSIN.82 under both stress and non-stress regimes at Sargodha, Pakistan. Seedling trial results showed that 6 hybrids only germinated in 5 and 7.5% PEG-induced osmotic stress, respectively. H1 (C.112 × RH.344) and H2 (C.112 × RH.347) had the highest germination% at 5% and 7.5% osmotic stress (OS). Seedling vigor index (SVI) was the highest in H1 (C.112 × RH.344) hybrids at 5% OS, H2 had the highest SVI under 7.5% OS, followed by H3 (C112 × RH344) and H4 (C116 × RH344). Originality/Value: In view of above results, it was concluded that hybrid combination H1 had the highest seed yield under stress conditions in both environments. High seed yield may be due to its better germination and vigor index under stress conditions.

Keywords: climate change, CTD, genetic variability, osmotic stress

Procedia PDF Downloads 47
2989 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 104
2988 Effects of Soil-Structure Interaction on Seismic Performance of Steel Structures Equipped with Viscous Fluid Dampers

Authors: Faramarz Khoshnoudian, Saeed Vosoughiyan

Abstract:

The main goal of this article is to clarify the soil-structure interaction (SSI) effects on the seismic performance of steel moment resisting frame buildings which are rested on soft soil and equipped with viscous fluid dampers (VFDs). For this purpose, detailed structural models of a ten-story SMRF with VFDs excluding and including the SSI are constructed first. In order to simulate the dynamic response of the foundation, in this paper, the simple cone model is applied. Then, the nonlinear time-history analysis of the models is conducted using three kinds of earthquake excitations with different intensities. The analysis results have demonstrated that the SSI effects on the seismic performance of a structure equipped with VFDs and supported by rigid foundation on soft soil need to be considered. Also VFDs designed based on rigid foundation hypothesis fail to achieve the expected seismic objective while SSI goes into effect.

Keywords: nonlinear time-history analysis, soil-structure interaction, steel moment resisting frame building, viscous fluid dampers

Procedia PDF Downloads 315
2987 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction

Authors: Norsyamimi Hassim, Masturah Markom

Abstract:

Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.

Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content

Procedia PDF Downloads 114
2986 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 301
2985 Examining First-time Remote Workers’ Perceptions on Work From Home Amidst the COVID-19 Pandemic: The Future Potential of Hybrid Work Mode

Authors: Lina Vyas, Stuti Rawat

Abstract:

The COVID-19 outbreak has forced many employees to extensively adopt remote work or, widely known as work from home (WFH) arrangements. During the last two years, both employers and employees have had the opportunity to be increasingly aware of the benefits and drawbacks of WFH. Likewise, it gained the attention of academics from various schools of thought who have been interested in the future of work practices and work-life balance. Additionally, employees might also have various demands regarding their work practices after the pandemic. This study explores the potential of hybrid ways of working in the post-pandemic period by comparing first-timers who (sometimes or always) worked from home during the pandemic with those who did not, in terms of the aspects of work-life balance, work-life interference, job performance and willingness to work from home after the pandemic. The quantitative research approach was adopted. Data were collected via an online questionnaire from employees working from home in Hong Kong during the pandemic. There were one thousand three hundred and twenty-eight responses, but only 1,235 respondents experienced working from home during the pandemic. The findings reveal that 72.2% never had or hardly experienced work from home prior to the pandemic. There were statistically significant differences between first-timers and non-first-timers in work-life balance and work-life interference. The study also found that first-timers who were always working from home during the pandemic would prefer having longer WFH after the pandemic than those who were sometimes working from home. These results would serve as a basis for policy development, enabling policymakers to design appropriate HR policies and amend them to meet the current context of actual employee needs.

Keywords: hybrid working mode, remote working, work from home, work-life balance, workplace

Procedia PDF Downloads 89
2984 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology

Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji

Abstract:

Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.

Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric

Procedia PDF Downloads 56
2983 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 129
2982 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan

Abstract:

In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: forced convection, nanofluid, radiator, CFD simulation

Procedia PDF Downloads 330
2981 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 240
2980 A Multi-Science Study of Modern Synergetic War and Its Information Security Component

Authors: Alexander G. Yushchenko

Abstract:

From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.

Keywords: cyber and information security, hybrid war, psycho-information technology, synergetic war, Ruschism

Procedia PDF Downloads 116
2979 Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings

Authors: A. Čelan, M. Ćosić, D. Rušić, N. Kuzmanić

Abstract:

Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm3 bench scale batch cooling crystallizer with an aspect ratio (H/T) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution.

Keywords: dual impeller crystallizer, fluid flow pattern, metastable zone width, mixing time, radial impeller

Procedia PDF Downloads 173
2978 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 355