Search results for: deep space navigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5937

Search results for: deep space navigation

5157 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method

Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.

Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty

Procedia PDF Downloads 16
5156 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 186
5155 Classification of Multiple Cancer Types with Deep Convolutional Neural Network

Authors: Nan Deng, Zhenqiu Liu

Abstract:

Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.

Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern

Procedia PDF Downloads 299
5154 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 130
5153 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration

Authors: M. G. Shilina

Abstract:

The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.

Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt

Procedia PDF Downloads 150
5152 In Exile but Not at Peace: An Ethnography among Rwandan Army Deserters in South Africa

Authors: Florence Ncube

Abstract:

This paper examines the military and post-military experiences of soldiers who deserted from the Rwanda Defence Force (RDF) and tried to make a living in South Africa. Because they are deserters, they try to hide their military identity, yet it is simultaneously somewhat coercively ascribed to them by the Rwandan state and can put them in potential danger. The paper attends to the constructions, experiences, practices, and subjective understanding of the deserters’ being in exile to examine how, under circumstances of perceived threat, these men navigate real or perceived state-sponsored surveillance and threat in non-military settings in South Africa where they have become potential political and disciplinary targets. To make sense of the deserters’ experiences in these circumstances, the paper stitches together a number of useful theoretical concepts, including Bourdieu’s (1992) theory of practice and Vigh’s (2009; 2018) concept of social navigation because no single approach can coherently analyze the specificity of this study. Conventional post-military literature privileges an understanding of army desertion as a malignancy and somewhat problematic. Little is known about the military and post-military experiences of deserters who believe that army desertion is in fact a building block towards achieving subjective peace, even in the context of exile. The paper argues that the presence of Rwandan state agents in South Africa strips the context of the exile of its capacity to provide the deserters with peace, safety, and security. This paper recenters army desertion in analyses of militarism, soldiering, and transition in African contexts and complicates commonsense understandings of army desertion which assume that it is entirely problematic. This paper is drawn from an ethnography conducted among 30 junior-rank Rwandan army deserters exiled in Johannesburg and Cape Town. The researcher employed life histories, in-depth interviews, and deep hangouts to collect data.

Keywords: army deserter, military, identity, exile, peacebuilding, South Africa

Procedia PDF Downloads 69
5151 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 249
5150 A Multimodal Measurement Approach Using Narratives and Eye Tracking to Investigate Visual Behaviour in Perceiving Naturalistic and Urban Environments

Authors: Khizar Z. Choudhrya, Richard Coles, Salman Qureshi, Robert Ashford, Salim Khan, Rabia R. Mir

Abstract:

Abstract: The majority of existing landscape research has been derived by conducting heuristic evaluations, without having empirical insight of real participant visual response. In this research, a modern multimodal measurement approach (using narratives and eye tracking) was applied to investigate visual behaviour in perceiving naturalistic and urban environments. This research is unique in exploring gaze behaviour on environmental images possessing different levels of saliency. Eye behaviour is predominantly attracted by salient locations. The concept of methodology of this research on naturalistic and urban environments is drawn from the approaches in market research. Borrowing methodologies from market research that examine visual responses and qualities provided a critical and hitherto unexplored approach. This research has been conducted by using mixed methodological quantitative and qualitative approaches. On the whole, the results of this research corroborated existing landscape research findings, but they also identified potential refinements. The research contributes both methodologically and empirically to human-environment interaction (HEI). This study focused on initial impressions of environmental images with the help of eye tracking. Taking under consideration the importance of the image, this study explored the factors that influence initial fixations in relation to expectations and preferences. In terms of key findings of this research it is noticed that each participant has his own unique navigation style while surfing through different elements of landscape images. This individual navigation style is given the name of ‘visual signature’. This study adds the necessary clarity that would complete the picture and bring an insight for future landscape researchers.

Keywords: human-environment interaction (HEI), multimodal measurement, narratives, eye tracking

Procedia PDF Downloads 339
5149 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 168
5148 Bivariate Generalization of q-α-Bernstein Polynomials

Authors: Tarul Garg, P. N. Agrawal

Abstract:

We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.

Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness

Procedia PDF Downloads 379
5147 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 208
5146 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents

Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet

Abstract:

Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.

Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures

Procedia PDF Downloads 125
5145 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268
5144 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 154
5143 A Desire to be ‘Recognizable and Reformed’: Natives’ Identity in Walcott’s “Dream on Monkey Mountain”

Authors: S. Khurram, N. Mubashar

Abstract:

The paper examines, through the lens of Postcolonial Theory, how natives resist and react in Derrek Walcott’s “Dream on Monkey Mountain”. It aims at how natives, for being ‘recognized and reformed’, mimic and adapt the white’s ways of living. It also focuses how Walcott expresses natives’ reaction when they cannot construct their identity. Moreover, the paper exploits the Homi. K Bhaba’s concept of Mimicry and Berry’s concepts of Hybridity to explain Caribbean native’s plight. Furthermore, it bring forth Walcott’s deep insight into the psychology of the Caribbean natives. He digs deep into the colonial discourse to reconstruct post-colonial identity and he, as a post-colonial writer, does so by deconstructing colonial ideology of racism by resisting against it.

Keywords: postcolonial theory, mimicry, hybridity, reaction

Procedia PDF Downloads 182
5142 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
5141 A Comparative Analysis of the Indoor Thermal Environment of a Room with and without Transitional Space or Threshold in Traditional Row Houses Adjacent to a Narrow Alley 'Rupchan Lane' in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate thermal comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it resides at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. This paper aims to investigate the indoor thermal environment of a room with and without transitional space or threshold in traditional row houses adjacent to a narrow alley of old Dhaka through field measurements. Transitional spaces are the part of buildings which are used for semi-outdoor household activities, social gathering and it is also proved to provide an indoor thermal effect. The field study was conducted by collecting thermal data (temperature, humidity and airflow) respectively, among the outdoor narrow alley, transitional space and adjacent indoor. This east-west elongated alley has an average width of 2.13 meter (varies from 1.5 to 2.6 meter) holding row houses on both sides. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature of corresponding cases. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of row houses with transitional spaces and in its relation to the adjacent outdoor space while achieving thermal comfort.

Keywords: alley, Old-Dhaka, row houses, temperature, thermal comfort, threshold, transitional space

Procedia PDF Downloads 187
5140 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 306
5139 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
5138 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 346
5137 Unpredictable Territorial Interiority: Learning the Spatiality from the Early Space Learners

Authors: M. Mirza Y. Harahap

Abstract:

This paper explores the interiority of children’s territorialisation in domestic space context by looking at their affective relations with their surroundings. Examining its spatiality, the research focuses on the interactions that developed between the children and the things which exist in their house, specifically those which left traces, indicating the very arena of their territory. As early learners, the children whose mind and body are still in the development stage are hypothetically distinct in the way they territorialise the space. Rule, common sense and other form of common acceptances among the adults might not be relevant with their way on territorialising the space. Unpredictability-ness, inappropriateness, and unimaginableness hypothetically characterise their unique endeavour when territorialising the space. The purpose might even be insignificant, expressing their very development which unrestricted. This indicates how the interiority of children’s territorialisation in a domestic space context actually is. It would also implicate on a new way of seeing territory since territorialisation act has natural purpose: to aim the space and regard them as his/her own. Aiming to disclose the above territorialisation characteristics, this paper addresses a qualitative study which covers a comprehensive analysis as follow: 1) Collecting various territorial traces left from the children activities within their respective houses. Further within this stage, the data is categorised based on the territorial strategy and tactic. This stage would particularly result in the overall map of the children’s territorial interiority which expresses its focuses, range and ways; 2) Examining the interactions occurred between the children and the spatial elements within the house. Stressing on the affective relations, this stage revealed the immaterial aspect of the children’s territorialisation, thus disclosed the unseen spatial aspect of territorialisation; and 3) Synthesising the previous two stages. Correlating the results from the two stages would then help us to understand the children’s unpredictable, inappropriate and unimaginable territorial interiority. This would also help us to justify how the children learn the space through territorialisation act, its importance and its position in interiority conception. The discussed relation between the children and the houses that cover both its physical and imaginary entity as part of their overall dwelling space would also help us to have a better understanding towards specific spatial elements which are significant and undeniably important for children’s spatial learning process. Particularly for this last finding, it would also help us to determine what kind of spatial elements which are necessary to be existed in a house, thus help for design development purpose. Overall, the study in this paper would help us to broaden our mindset regarding the territory, dwelling, interiority and the overall interior architecture conception, promising a chance for further research within interior architecture field.

Keywords: children, interiority, relation, territory

Procedia PDF Downloads 139
5136 Deep Mill Level Zone (DMLZ) of Ertsberg East Skarn System, Papua; Correlation between Structure and Mineralization to Determined Characteristic Orebody of DMLZ Mine

Authors: Bambang Antoro, Lasito Soebari, Geoffrey de Jong, Fernandy Meiriyanto, Michael Siahaan, Eko Wibowo, Pormando Silalahi, Ruswanto, Adi Budirumantyo

Abstract:

The Ertsberg East Skarn System (EESS) is located in the Ertsberg Mining District, Papua, Indonesia. EESS is a sub-vertical zone of copper-gold mineralization hosted in both diorite (vein-style mineralization) and skarn (disseminated and vein style mineralization). Deep Mill Level Zone (DMLZ) is a mining zone in the lower part of East Ertsberg Skarn System (EESS) that product copper and gold. The Deep Mill Level Zone deposit is located below the Deep Ore Zone deposit between the 3125m to 2590m elevation, measures roughly 1,200m in length and is between 350 and 500m in width. DMLZ planned start mined on Q2-2015, being mined at an ore extraction rate about 60,000 tpd by the block cave mine method (the block cave contain 516 Mt). Mineralization and associated hydrothermal alteration in the DMLZ is hosted and enclosed by a large stock (The Main Ertsberg Intrusion) that is barren on all sides and above the DMLZ. Late porphyry dikes that cut through the Main Ertsberg Intrusion are spatially associated with the center of the DMLZ hydrothermal system. DMLZ orebody hosted in diorite and skarn, both dominantly by vein style mineralization. Percentage Material Mined at DMLZ compare with current Reserves are diorite 46% (with 0.46% Cu; 0.56 ppm Au; and 0.83% EqCu); Skarn is 39% (with 1.4% Cu; 0.95 ppm Au; and 2.05% EqCu); Hornfels is 8% (with 0.84% Cu; 0.82 ppm Au; and 1.39% EqCu); and Marble 7 % possible mined waste. Correlation between Ertsberg intrusion, major structure, and vein style mineralization is important to determine characteristic orebody in DMLZ Mine. Generally Deep Mill Level Zone has 2 type of vein filling mineralization from both hosted (diorite and skarn), in diorite hosted the vein system filled by chalcopyrite-bornite-quartz and pyrite, in skarn hosted the vein filled by chalcopyrite-bornite-pyrite and magnetite without quartz. Based on orientation the stockwork vein at diorite hosted and shallow vein in skarn hosted was generally NW-SE trending and NE-SW trending with shallow-moderate dipping. Deep Mill Level Zone control by two main major faults, geologist founded and verified local structure between major structure with NW-SE trending and NE-SW trending with characteristics slickenside, shearing, gauge, water-gas channel, and some has been re-healed.

Keywords: copper-gold, DMLZ, skarn, structure

Procedia PDF Downloads 501
5135 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.

Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 125
5134 Piracy in Southeast Asian Waters: Problems, Legal Measures and Way Forward

Authors: Ahmad Almaududy Amri

Abstract:

Southeast Asia is considered as an area which is important in terms of piratical studies. There are several reasons to this argument: firstly, it has the second highest figure of piracy attacks in the world from 2008 to 2012. Only the African Region transcends the number of piracies that were committed in Southeast Asia. Secondly, the geographical location of the region is very important to world trade. There are several sea lanes and straits which are normally used for international navigation mainly for trade purposes. In fact, there are six out of 25 busiest ports all over the world located in Southeast Asia. In ancient times, the main drivers of piracy were raiding for plunder and capture of slaves; however, in modern times, developments in politics, economics and even military technology have drastically altered the universal crime of piracy. There are a variety of motives behind modern day piracy including economic gains from receiving ransoms from government or ship companies, political and even terrorist reasons. However, it cannot be denied that piratical attacks persist and continue. States have taken measures both at the international and regional level in order to eradicate piratical attacks. The United Nations Convention on the Law of the Sea and the Convention on the Suppression of Unlawful Act against the Safety of Navigation served as the two main international legal frameworks in combating piracy. At the regional level, Regional Cooperation Agreement against Piracy and Armed Robbery and ASEAN measures are regard as prominent in addressing the piracy problem. This paper will elaborate the problems of piracy in Southeast Asia and examine the adequacy of legal frameworks at both the international and regional levels in order address the current legal measures in combating piracy. Furthermore, it will discuss current challenges in the implementation of anti-piracy measures at the international and regional levels as well as the way forward in addressing the issue.

Keywords: piracy, Southeast Asia, maritime security, legal frameworks

Procedia PDF Downloads 503
5133 The Impact of Neonatal Methamphetamine on Spatial Learning and Memory of Females in Adulthood

Authors: Ivana Hrebickova, Maria Sevcikova, Romana Slamberova

Abstract:

The present study was aimed at evaluation of cognitive changes following scheduled neonatal methamphetamine exposure in combination with long-term exposure in adulthood of female Wistar rats. Pregnant mothers were divided into two groups: group with indirect exposure (methamphetamine in dose 5 mg/ml/kg, saline in dose 1 ml/kg) during early lactation period (postnatal day 1–11) - progeny of these mothers were exposed to the effects of methamphetamine or saline indirectly via the breast milk; and the second group with direct exposure – all mothers were left intact for the entire lactation period, while progeny was treated with methamphetamine (5 mg/ml/kg) by injection or the control group, which was received needle pick (shame, not saline) at the same time each day of period of application (postnatal day 1–11). Learning ability and memory consolidation were tested in the Morris Water Maze, which consisted of three types of tests: ‘Place Navigation Test ‘; ‘Probe Test ‘; and ‘Memory Recall Test ‘. Adult female progeny were injected daily, after completion last trial with saline or methamphetamine (1 mg/ml/kg). We compared the effects of indirect/direct neonatal methamphetamine exposure and adult methamphetamine treatment on cognitive function of female rats. Statistical analyses showed that neonatal methamphetamine exposure worsened spatial learning and ability to remember the position of the platform. The present study demonstrated that direct methamphetamine exposure has more significant impact on process of learning and memory than indirect exposure. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirm all these results.

Keywords: methamphetamine, Morris water maze, neonatal exposure, strategies, Wistar rats

Procedia PDF Downloads 266
5132 Undernutrition Among Children Below Five Years of Age in Uganda: A Deep Dive into Space and Time

Authors: Vallence Ngabo Maniragaba

Abstract:

This study aimed at examining the variations of undernutrition among children below 5 years of age in Uganda. The approach of spatial and spatiotemporal analysis helped in identifying cluster patterns, hot spots and emerging hot spots. Data from the 6 Uganda Demographic and Health Surveys spanning from 1990 to 2016 were used with the main outcome variable being undernutrition among children <5 years of age. All data that were relevant to this study were retrieved from the survey datasets and combined with the 214 shape files for the districts of Uganda to enable spatial and spatiotemporal analysis. Spatial maps with the spatial distribution of the prevalence of undernutrition, both in space and time, were generated using ArcGIS Pro version 2.8. Moran’s I, an index of spatial autocorrelation, rules out doubts of spatial randomness in order to identify spatially clustered patterns of hot or cold spot areas. Furthermore, space-time cubes were generated to establish the trend in undernutrition as well as to mirror its variations over time and across Uganda. Moreover, emerging hot spot analysis was done to help identify the patterns of undernutrition over time. The results indicate a heterogeneous distribution of undernutrition across Uganda and the same variations were also evident over time. Moran’s I index confirmed spatial clustered patterns as opposed to random distributions of undernutrition prevalence. Four hot spot areas, namely; the Karamoja, the Sebei, the West Nile and the Toro regions were significantly evident, most of the central parts of Uganda were identified as cold spot clusters, while most of Western Uganda, the Acholi and the Lango regions had no statistically significant spatial patterns by the year 2016. The spatio-temporal analysis identified the Karamoja and Sebei regions as clusters of persistent, consecutive and intensifying hot spots, West Nile region was identified as a sporadic hot spot area while the Toro region was identified with both sporadic and emerging hotspots. In conclusion, undernutrition is a silent pandemic that needs to be handled with both hands. At 31.2 percent, the prevalence is still very high and unpleasant. The distribution across the country is nonuniform with some areas such as the Karamoja, the West Nile, the Sebei and the Toro regions being epicenters of undernutrition in Uganda. Over time, the same areas have experienced and exhibited high undernutrition prevalence. Policymakers, as well as the implementers, should bear in mind the spatial variations across the country and prioritize hot spot areas in order to have efficient, timely and region-specific interventions.

Keywords: undernutrition, spatial autocorrelation, hotspots analysis, geographically weighted regressions, emerging hotspots analysis, under-fives, Uganda

Procedia PDF Downloads 86
5131 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 98
5130 Interactive Glare Visualization Model for an Architectural Space

Authors: Florina Dutt, Subhajit Das, Matthew Swartz

Abstract:

Lighting design and its impact on indoor comfort conditions are an integral part of good interior design. Impact of lighting in an interior space is manifold and it involves many sub components like glare, color, tone, luminance, control, energy efficiency, flexibility etc. While other components have been researched and discussed multiple times, this paper discusses the research done to understand the glare component from an artificial lighting source in an indoor space. Consequently, the paper discusses a parametric model to convey real time glare level in an interior space to the designer/ architect. Our end users are architects and likewise for them it is of utmost importance to know what impression the proposed lighting arrangement and proposed furniture layout will have on indoor comfort quality. This involves specially those furniture elements (or surfaces) which strongly reflect light around the space. Essentially, the designer needs to know the ramification of the ‘discomfortable glare’ at the early stage of design cycle, when he still can afford to make changes to his proposed design and consider different routes of solution for his client. Unfortunately, most of the lighting analysis tools that are present, offer rigorous computation and analysis on the back end eventually making it challenging for the designer to analyze and know the glare from interior light quickly. Moreover, many of them do not focus on glare aspect of the artificial light. That is why, in this paper, we explain a novel approach to approximate interior glare data. Adding to that we visualize this data in a color coded format, expressing the implications of their proposed interior design layout. We focus on making this analysis process very fluid and fast computationally, enabling complete user interaction with the capability to vary different ranges of user inputs adding more degrees of freedom for the user. We test our proposed parametric model on a case study, a Computer Lab space in our college facility.

Keywords: computational geometry, glare impact in interior space, info visualization, parametric lighting analysis

Procedia PDF Downloads 350
5129 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 48
5128 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 78