Search results for: Ad hocs networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2818

Search results for: Ad hocs networks

2038 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 126
2037 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 49
2036 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 92
2035 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 96
2034 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 401
2033 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 129
2032 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

Authors: Ilham S. M. Elsayed

Abstract:

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station

Procedia PDF Downloads 255
2031 Disaster Management Using Wireless Sensor Networks

Authors: Akila Murali, Prithika Manivel

Abstract:

Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.

Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology

Procedia PDF Downloads 408
2030 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 118
2029 A Theoretical Framework on International Voluntary Health Networks

Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith

Abstract:

Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.

Keywords: development, global health, power, volunteering

Procedia PDF Downloads 329
2028 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 35
2027 An Eco-Translatology Approach to the Translation of Spanish Tourism Advertising in Digital Communication in Chinese

Authors: Mingshu Liu, Laura Santamaria, Xavier Carmaniu Mainadé

Abstract:

As one of the sectors most affected by the COVID-19 pandemic, tourism is facing challenges in revitalizing the industry. But at the same time, it would be a good opportunity to take advantage of digital communication as an effective tool for tourism promotion. Our proposal aims to verify the linguistic operations on online platforms in China. The research is carried out based on the theory of Eco-traductology put forward by Gengshen Hu, whose contribution focuses on the translator's adaptation to the ecosystem environment and the three elaborated parameters (linguistic, cultural and communicative). We also relate it to Even-Zohar's and Toury's theoretical postulates on the Polysystem to elaborate on interdisciplinary methodology. Such a methodology allows us to analyze personal treatments and phraseology in the target text. As for the corpus, we adopt the official Spanish-language website of Turismo de España as the source text and the postings on the two major social networks in China, Weibo and Wechat, in 2019. Through qualitative analysis, we conclude that, in the tourism advertising campaign on Chinese social networks, chengyu (Chinese phraseology) and honorific titles are used very frequently.

Keywords: digital communication, eco-traductology, polysystem theory, tourism advertising

Procedia PDF Downloads 231
2026 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

Authors: Aradhna Pandarum

Abstract:

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Keywords: medium voltage networks, power system losses, power system voltage, solar photovoltaic

Procedia PDF Downloads 158
2025 Rational Allocation of Resources in Water Infrastructure Development Projects

Authors: M. Macchiaroli, V. Pellecchia, L. Dolores

Abstract:

Within any European and world model of management of the integrated water service (in Italy only since 2012 is regulated by a national Authority, that is ARERA), a significant part is covered by the development of assets in terms of hydraulic networks and wastewater collection networks, including all their relative building works. The process of selecting the investments to be made starts from the preventive analysis of critical issues (water losses, unserved areas, low service standards, etc.) who occur in the managed territory of the Operator. Through the Program of Interventions (Provision by ARERA n. 580/2019/R/idr), the Operator provides to program the projects that can meet the emerged needs to determine the improvement of the water service levels. This phase (analyzed and solved by the author with a work published in 2019) involves the use of evaluation techniques (cost-benefit analysis, multi-criteria, and multi-objective techniques, neural networks, etc.) useful in selecting the most appropriate design answers to the different criticalities. However, at this point, the problem of establishing the time priorities between the various works deemed necessary remains open. That is, it is necessary to hierarchize the investments. In this decision-making moment, the interests of the private Operator are often opposed, which favors investments capable of generating high profitability, compared to those of the public controller (ARERA), which favors investments in greater social impact. In support of the concertation between these two actors, the protocol set out in the research has been developed, based on the AHP and capable of borrowing from the programmatic documents an orientation path for the settlement of the conflict. The protocol is applied to a case study of the Campania Region in Italy and has been professionally applied in the shared decision process between the manager and the local Authority.

Keywords: analytic hierarchy process, decision making, economic evaluation of projects, integrated water service

Procedia PDF Downloads 128
2024 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 537
2023 Social Networks in Business: The Complex Concept of Wasta and the Impact of Islam on the Perception of This Practice

Authors: Sa'ad Ali

Abstract:

This study explores wasta as an example of a social network and how it impacts business practice in the Arab Middle East, drawing links with social network impact in different regions of the world. In doing so, particular attention will be paid to the socio-economic and cultural influences on business practice. In exploring relationships in business, concepts such as social network analysis, social capital and group identity are used to explore the different forms of social networks and how they influence business decisions and practices in the regions and countries where they prevail. The use of social networks to achieve objectives is known as guanxi in China, wasta in the Arab Middle East and blat in ex-Soviet countries. Wasta can be defined as favouritism based on tribal and family affiliation and is a widespread practice that has a substantial impact on political, social and business interactions in the Arab Middle East. Within the business context, it is used in several ways, such as to secure a job or promotion or to cut through bureaucracy in government interactions. The little research available is fragmented, and most studies reveal a negative attitude towards its usage in business. Paradoxically, while wasta is widely practised, people from the Arab Middle East often deny its influence. Moreover, despite the regular exhibition of a negative opinion on the practice of wasta, it can also be a source of great pride. This paper addresses this paradox by conducting a positional literature review, exploring the current literature on wasta and identifying how the identified paradox can be explained. The findings highlight how wasta, to a large extent, has been treated as an umbrella concept, whilst it is a highly complex practice which has evolved from intermediary wasta to intercessory wasta and therefore from bonding social capital relationships to more bridging social capital relationships. In addition, the research found that Islam, as the predominant religion in the region and the main source of ethical guidance for the majority of people from the region, plays a substantial role in this paradox. Specifically, it is submitted that wasta can be viewed positively in Islam when it is practised to aid others without breaking Islamic ethical guidelines, whilst it can be viewed negatively when it is used in contradiction with the teachings of Islam. As such, the unique contribution to knowledge of this study is that it ties together the fragmented literature on wasta, highlighting and helping us understand its complexity. In addition, it sheds light on the role of Islam in wasta practices, aiding our understanding of the paradoxical nature of the practice.

Keywords: Islamic ethics, social capital, social networks, Wasta

Procedia PDF Downloads 150
2022 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 512
2021 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index

Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei

Abstract:

Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.

Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange

Procedia PDF Downloads 466
2020 A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks

Authors: Noel Jeygar Robert, V. K.Vidya

Abstract:

Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniques

Keywords: cognitive radio, game theory, bargaining game, Cournot game

Procedia PDF Downloads 303
2019 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 72
2018 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations

Authors: Lori W. Gordon, Karen A. Jones

Abstract:

Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.

Keywords: communications, global, infrastructure, technology

Procedia PDF Downloads 90
2017 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 140
2016 Dye Retention by a Photochemicaly Crosslinked Poly(2-Hydroxy-Ethyl-Meth-Acrylic) Network in Water

Authors: Yasmina Houda Bendahma, Tewfik Bouchaour, Meriem Merad, Ulrich Maschke

Abstract:

The purpose of this work is to study retention of dye dissolved in distilled water, by an hydrophilic acrylic polymer network. The polymer network considered is Poly (2-hydroxyethyl methacrylate) (PHEMA): it is prepared by photo-polymerization under UV irradiation in the presence of a monomer (HEMA), initiator and an agent cross-linker. PHEMA polymer network obtained can be used in the retention of dye molecules present in the wastewater. The results obtained are interesting in the study of the kinetics of swelling and de-swelling of cross linked polymer networks PHEMA in colored aqueous solutions. The dyes used for retention by the PHEMA networks are eosin Y and Malachite Green, dissolved in distilled water. Theoretical conformational study by a simplified molecular model of system cross linked PHEMA / dye (eosin Y and Malachite Green), is used to simulate the retention phenomenon (or Docking) dye molecules in cavities in nano-domains included in the PHEMA polymer network.

Keywords: dye retention, molecular modeling, photochemically crosslinked polymer network, swelling deswelling, PHEMA, HEMA

Procedia PDF Downloads 369
2015 Adolescents’ and Young Adults’ Well-Being, Health, and Loneliness during the COVID-19 Pandemic

Authors: Jessica Hemberg, Amanda Sundqvist, Yulia Korzhina, Lillemor Östman, Sofia Gylfe, Frida Gädda, Lisbet Nyström, Henrik Groundstroem, Pia Nyman-Kurkiala

Abstract:

Purpose: There are large gaps in the literature on COVID-19 pandemic-related mental health outcomes and after-effects specific to adolescents and young adults. The study's aim was to explore adolescents’ and young adults’ experiences of well-being, health, and loneliness during the COVID-19 pandemic. Method: A qualitative exploratory design with qualitative content analysis was used. Twenty-three participants (aged 19-27; four men and 19 women) were interviewed. Results: Four themes emerged: Changed social networks – fewer and closer contacts, changed mental and physical health, increased physical and social loneliness, well-being, internal growth, and need for support. Conclusion: Adolescents’ and young adults’ experiences of well-being, health, and loneliness are subtle and complex. Participants experienced changed social networks, mental and physical health, and well-being. Also, internal growth, need for support, and increased loneliness were seen. Clear information on how to seek help and support from professionals should be made available.

Keywords: adolescents, COVID-19 pandemic, health, interviews, loneliness, qualitative, well-being, young adults

Procedia PDF Downloads 104
2014 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists

Authors: Sefik Can Karakaya, Ibrahim Demir

Abstract:

In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.

Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression

Procedia PDF Downloads 147
2013 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 196
2012 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 325
2011 Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods

Authors: Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Ahmed M. Rabie

Abstract:

Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions.

Keywords: wireless mesh networks, genetic algorithms, simulated annealing, topology design

Procedia PDF Downloads 463
2010 Robust ResNets for Chemically Reacting Flows

Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi

Abstract:

Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.

Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets

Procedia PDF Downloads 124
2009 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 24