Search results for: shape properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10572

Search results for: shape properties

2562 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 517
2561 Synthesis and Characterization of Chitosan Schiff Base Supported Pd(II) Catalyst and Its Application in Suzuki Coupling Reactions

Authors: Talat Baran

Abstract:

Palladium-catalyzed Suzuki coupling reactions are powerful ways for synthesis of biaryls compounds and so far different palladium sources as have been used in catalyst systems. However, the high cost of the ligands using as support materials for palladium ion and so researchers have explored alternative low-cost support materials such as silica, cellule and zeolite. A natural polymer chitosan is suitable for support material because of it unique properties such as eco-friendly, renewable, abundant, low cost, biodegradable and it has free reactive -NH2 and –OH groups. Especially, pendant amino groups of chitosan can easily react with carbonyl groups of aldehyde or ketone by Schiff base formation and thus palladium ions can coordinate with imine groups of Schiff base. This purpose, in this study, firstly a new chitosan Schiff base supported palladium (II) catalyst was synthesized and its chemical structure was characterized with FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES and magnetic moment techniques. Then catalytic performance of the catalyst was investigated in Suzuki cross coupling reactions under simple and fast microwave heating methods. Also, recycle activity of palladium catalyst was tested under optimum condition and the catalyst showed long life time. At the end of catalytic performance tests of chitosan supported palladium (II) catalysts indicated high turnover numbers, turnover frequency and selectivity with very small loading catalyst

Keywords: catalyst, chitosan, Schiff base, Suzuki coupling

Procedia PDF Downloads 306
2560 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 148
2559 Production, Optimization, Characterization, and Kinetics of a Partially Purified Laccase from Pleurotus citrinopileatus and Its Application in Swift Bioremediation of Azo Dyes

Authors: Ankita Kushwaha, M. P. Singh

Abstract:

Background: In the present investigation the efficiency of laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) from Pleurotus citrinopileatus was assessed for the decolorization of azo dyes. Aim: Enzyme production, characterization and kinetics of a partially purified laccase from Pleurotus citrinopileatus were determined for its application in bioremediation of azo dyes. Methods & Results: Laccase has been partially purified by using 80% ammonium sulphate solution. Total activity, total protein, specific activity and purification fold for partially purified laccase were found to be 40.38U, 293.33mg/100ml, 0.91U/mg and 2.84, respectively. The pH and temperature optima of laccase were 5.0 and 50ºC, respectively, while the enzyme was most stable at pH 4.0 and temperature 30ºC when exposed for one hour. The Km of the partially purified laccase for substrates guaiacol, DMP (2,6-dimethoxyphenol) and syringaldazine (3,5-dimethoxy-4-hydroxybenzaldehyde azine) were 60, 95 and 26, respectively. This laccase has been tested for the use in the bioremediation of azo dyes in the absence of mediator molecules. Two dyes namely congo red and bromophenol blue were tested. Discussion: It was observed that laccase enzyme was very effective in the decolorization of these two dyes. More than 80% decolorization was observed within half an hour even in the absence of mediator and their lower Km value indicates that efficiency of the enzyme is very high. The results were promising due to quicker decolorization in the absence of mediators showing that it can be used as a valuable biocatalyst for quick bioremediation of azo dyes. Conclusion: The enzymatic properties of laccase from P. citrinopileatus should be considered for a potential environmental (biodegradation and bioremediation) or industrial applications.

Keywords: azo dyes, decolorization, laccase, P.citrinopileatus

Procedia PDF Downloads 202
2558 Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)

Authors: Mohammad Mehdi Pardsouie, Mehdi Mokhberi, Seyed Mohammad Ali Zomorodian, Seyed Alireza Nasehi

Abstract:

One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants.

Keywords: partial penetration, surcharge preloading, excess pore water pressure, Bangkok test embankments

Procedia PDF Downloads 182
2557 Quantification of Peptides (linusorbs) in Gluten-free Flaxseed Fortified Bakery Products

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin JT Reaney

Abstract:

Flaxseed (Linumusitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. Linusorbs (LOs, a.k.a. Cyclolinopeptide) are bioactive compounds present in flaxseed exhibiting potential health effects. The study focused on the effects of processing and storage on the stability of flaxseed-derived LOs added to various bakery products. The flaxseed meal fortified gluten-free (GF) bakery bread was prepared, and the changes of LOs during the bread-making process (meal, fortified flour, dough, and bread) and storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were analyzed by high-performance liquid chromatography-diode array detection. The total oxidative LOs and LO1OB2 were almost kept stable in flaxseed meals at storage temperatures of 22−23 °C, −18 °C, and 4 °C for up to four weeks. Processing steps during GF-bread production resulted in the oxidation of LOs. Interestingly, no LOs were detected in the dough sample; however, LOs appeared when the dough was stored at −18 °C for one week, suggesting that freezing destroyed the sticky structure of the dough and resulted in the release of LOs. The final product, flaxseed meal fortified bread, could be stored for up to four weeks at −18 °C and 4 °C, and for one week at 22−23 °C. All these results suggested that LOs may change during processing and storage and that flaxseed flour-fortified bread should be stored at low temperatures to preserve effective LOs components.

Keywords: linum usitatissimum L., flaxseed, linusorb, stability, gluten-free, peptides, cyclolinopeptide

Procedia PDF Downloads 164
2556 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 155
2555 Internalising Islamic Principles of Theocracy as a Pedestal for Good Governance in Nigeria

Authors: Busari Moshood Olanyi

Abstract:

Good governance remains the expectation of every political party in power, especially in this democratic dispensation of the Nigerian Nation. The need to ensure that the citizenry enjoys the dividends of democracy as often promised during various electioneering campaigns is envisioned to be the motif for different agendas and political slogans by different administrations. Unfortunately, different political agendas towards the security of lives and properties, halting the pillage of the economy by corrupt public officials and creation of employment opportunities for the youths, have a record of setback in the history of political leadership and governance in Nigeria. Therefore, the paper examined the principles of Islamic theocracy in its advocacy for a paradigm shift in the Nigerian political system, with a view to engendering good governance. Islamic political terms such as Shūrā (mutual consultation), ‘Adālah (equality and justice), Khilāfah (succession and stewardship) Majlis ash-Shūrā (consultative forum) and Muḥāsabah (accountability) were espoused as sacrosanct to implementing Islamic theocracy as an alternative system of government in Nigeria. The paper concluded by being flexible on the nomenclature of the suggested political system, considering the multi-religious nature of the country as a political entity. Among other recommendations, infusion of politics into our moral/religious system and not the other way round was considered a good step in the direction of a political paradigm shift for ensuring good governance and guaranteeing its sustainability in Nigeria.

Keywords: Nigerian nation, democracy, good governance, Islamic theocracy, paradigm shift

Procedia PDF Downloads 133
2554 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 254
2553 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior

Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi

Abstract:

Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.

Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests

Procedia PDF Downloads 173
2552 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland

Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi

Abstract:

Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.

Keywords: ecosystem, business model, personal data, preventive healthcare

Procedia PDF Downloads 232
2551 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding

Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang

Abstract:

In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.

Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding

Procedia PDF Downloads 135
2550 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 379
2549 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: concrete beam, FRP bars, spacing effect, thermal deformation

Procedia PDF Downloads 192
2548 Characterisation of the H-ZSM-5 Zeolite Samples Synthesized in Wide Range of Si/Al Ratios and with H₂SO₄ and CH₃COOH Acids Used for Transformation to H-Form

Authors: Mladen Jankovic, Biljana Djuric, Djurdja Oljaca, Vladimir Damjanovic, Radislav Filipovic, Zoran Obrenovic

Abstract:

One of the key characteristics of zeolites with ZSM-5 crystalline form is the possibility of synthesis in a wide range of molar ratios, from the relatively low ratio of about 20 to highly silicate forms with a Si/Al ratio over 1000. For industrial production and commercial use of this type of zeolite, it is very important to know the influence of the molar Si/Al ratio on the characteristics of zeolite powders. In this paper, the influence of the Si/Al ratio on the characteristics of H-ZSM-5 zeolites synthesized in the presence of tetrapropylammonium bromide is questioned, including the possibility of conversion to the H-form using different acids. The quality of the samples is characterized in terms of crystallinity, chemical composition, morphology, granulometry, specific surface area (BET), pore size and acidity. XRD, FT-IR, EDX, ICP, SEM and TPD instrumental techniques were used to characterize the samples. In most of the performed syntheses, zeolite has been obtained with very good properties. It was shown that the examined conditions have a significant influence on the characteristics of the synthesized powders. The different chemical composition of the starting mixture, ie. the Si/Al ratio, has a very significant influence on the crystal structure of the synthesized powders, and thus on the other tested characteristics. It has been observed that optimal ion exchange results for powders of different Si/Al ratios are achieved by using different acids. Also, the dependence of the specific surface on the concentration of H+ or Na+ ions was confirmed.

Keywords: Characterisation, H-ZSM-5, molar ratio, synthesis, tetrapropylammonium bromide

Procedia PDF Downloads 187
2547 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique

Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra

Abstract:

Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.

Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying

Procedia PDF Downloads 220
2546 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions

Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars

Abstract:

Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.

Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions

Procedia PDF Downloads 223
2545 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture

Authors: S. Teimouri, S. Abbasi

Abstract:

Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.

Keywords: prebiotic, inulin, casein, stabilization, stevioside

Procedia PDF Downloads 261
2544 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test

Procedia PDF Downloads 154
2543 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 301
2542 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 294
2541 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 55
2540 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 243
2539 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 123
2538 Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana

Authors: Atheer Al-Maqbali, Mohammed Al-Rizeiqi, Pankaj Pathare

Abstract:

There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products.

Keywords: banana, drying, oman, quality, thickness, hardness, color

Procedia PDF Downloads 80
2537 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 115
2536 Groundwater Quality in the Rhiss-Nekor Plain, Morocco: Impacts of Human Activities

Authors: Ali Ait Boughrous, Said Benyoussef, Hossain El Ouarghi, Moulay Abdelazize Aboulhassan, Samah Aitbnichou, Said Benguamra

Abstract:

The Rhiss-Nekor aquifer represents a primary water source for the central Rif region. Many operating structures were built for irrigation and drinking water supply. Because of the vulnerability of this aquifer, a thorough knowledge of the environment is needed to evaluate and protect resources. This work aims at the quality assessment of the water table of the plain Ghiss-Nekor and determination of pollution sources in order to establish a map of the web. The plain-Rhiss Nekor, with an area of 100 km2, is located on the Mediterranean coast of Morocco. It has a particular geological structure resulting from the opening of a graben at the end of the Tertiary, which is filled by the accumulation of hundreds of meters of sediment, generating considerable heterogeneity in deposits. This heterogeneity gives various hydrodynamic properties within the aquifer of the plain. The analysis of the water quality of twenty water points, well distributed over the plain, showed high natural salinity linked to the geological nature of the area. This salinity increases in the littoral area by the seawater intrusion phenomenon. This is accentuated by overexploitation of the ground water due to the growing demand. Some wells, located inland, are characterized by organic pollution caused by wastewater seepage from septic tanks and lost wells widespread in the region.

Keywords: anthropogenic factors, groundwater quality, marine intrusion, Rhiss-Nekor aquifer

Procedia PDF Downloads 124
2535 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 513
2534 Physico-Chemical and Antibacterial Properties of Neem Extracts

Authors: C. C. Igwe

Abstract:

Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.

Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus

Procedia PDF Downloads 57
2533 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 196