Search results for: gas distribution network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9317

Search results for: gas distribution network

1427 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 194
1426 Patients' Out-Of-Pocket Expenses-Effectiveness Analysis of Presurgical Teledermatology

Authors: Felipa De Mello-Sampayo

Abstract:

Background: The aim of this study is to undertake, from a patient perspective, an economic analysis of presurgical teledermatology, comparing it with a conventional referral system. Store-and-forward teledermatology allows surgical planning, saving both time and number of visits involving travel, thereby reducing patients’ out-of-pocket expenses, i.e., costs that patients incur when traveling to and from health providers for treatment, visits’ fees, and the opportunity cost of time spent in visits. Method: Patients’ out-of-pocket expenses-effectiveness of presurgical teledermatology were analyzed in the setting of a public hospital during two years. The mean delay in surgery was used to measure effectiveness. The teledermatology network covering the area served by the Hospital Garcia da Horta (HGO), Portugal, linked the primary care centers of 24 health districts with the hospital’s dermatology department. The patients’ opportunity cost of visits, travel costs, and visits’ fee of each presurgical modality (teledermatology and conventional referral), the cost ratio between the most and least expensive alternative, and the incremental cost-effectiveness ratio were calculated from initial primary care visit until surgical intervention. Two groups of patients: those with squamous cell carcinoma and those with basal cell carcinoma were distinguished in order to compare the effectiveness according to the dermatoses. Results: From a patient perspective, the conventional system was 2.15 times more expensive than presurgical teledermatology. Teledermatology had an incremental out-of-pocket expenses-effectiveness ratio of €1.22 per patient and per day of delay avoided. This saving was greater in patients with squamous cell carcinoma than in patients with basal cell carcinoma. Conclusion: From a patient economic perspective, teledermatology used for presurgical planning and preparation is the dominant strategy in terms of out-of-pocket expenses-effectiveness than the conventional referral system, especially for patients with severe dermatoses.

Keywords: economic analysis, out-of-pocket expenses, opportunity cost, teledermatology, waiting time

Procedia PDF Downloads 140
1425 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 144
1424 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 80
1423 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 6
1422 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan

Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu

Abstract:

This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.

Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model

Procedia PDF Downloads 165
1421 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 65
1420 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 298
1419 An Analysis of the Representation of the Translator and Translation Process into Brazilian Social Networking Groups

Authors: Érica Lima

Abstract:

In the digital era, in which we have an avalanche of information, it is not new that the Internet has brought new modes of communication and knowledge access. Characterized by the multiplicity of discourses, opinions, beliefs and cultures, the web is a space of political-ideological dimensions where people (who often do not know each other) interact and create representations, deconstruct stereotypes, and redefine identities. Currently, the translator needs to be able to deal with digital spaces ranging from specific software to social media, which inevitably impact on his professional life. One of the most impactful ways of being seen in cyberspace is the participation in social networking groups. In addition to its ability to disseminate information among participants, social networking groups allow a significant personal and social exposure. Such exposure is due to the visibility of each participant achieved not only on its personal profile page, but also in each comment or post the person makes in the groups. The objective of this paper is to study the representations of translators and translation process on the Internet, more specifically in publications in two Brazilian groups of great influence on the Facebook: "Translators/Interpreters" and "Translators, Interpreters and Curious". These chosen groups represent the changes the network has brought to the profession, including the way translators are seen and see themselves. The analyzed posts allowed a reading of what common sense seems to think about the translator as opposed to what the translators seem to think about themselves as a professional class. The results of the analysis lead to the conclusion that these two positions are antagonistic and sometimes represent conflict of interests: on the one hand, the society in general consider the translator’s work something easy, therefore it is not necessary to be well remunerated; on the other hand, the translators who know how complex a translation process is and how much it takes to be a good professional. The results also reveal that social networking sites such as Facebook provide more visibility, but it takes a more active role from the translator to achieve a greater appreciation of the profession and more recognition of the role of the translator, especially in face of increasingly development of automatic translation programs.

Keywords: Facebook, social representation, translation, translator

Procedia PDF Downloads 146
1418 Comparison of the Isolation Rates and Characteristics of Salmonella Isolated from Antibiotic-Free and Conventional Chicken Meat Samples

Authors: Jin-Hyeong Park, Hong-Seok Kim, Jin-Hyeok Yim, Young-Ji Kim, Dong-Hyeon Kim, Jung-Whan Chon, Kun-Ho Seo

Abstract:

Salmonella contamination in chicken samples can cause major health problems in humans. However, not only the effects of antibiotic treatment during growth but also the impacts of poultry slaughter line on the prevalence of Salmonella in final chicken meat sold to consumers are unknown. In this study, we compared the isolation rates and antimicrobial resistance of Salmonella between antibiotic-free, conventional, conventional Korean native retail chicken meat samples and clonal divergence of Salmonella isolates by multilocus sequence typing. In addition, the distribution of extended-spectrum β-lactamase (ESBL) genes in ESBL-producing Salmonella isolates was analyzed. A total of 72 retail chicken meat samples (n = 24 antibiotic-free broiler [AFB] chickens, n = 24 conventional broiler [CB] chickens, and n = 24 conventional Korean native [CK] chickens) were collected from local retail markets in Seoul, South Korea. The isolation rates of Salmonella were 66.6% in AFB chickens, 45.8% in CB chickens, and 25% in CK chickens. By analyzing the minimum inhibitory concentrations of β -lactam antibiotics with the disc-diffusion test, we found that 81.2% of Salmonella isolates from AFB chickens, 63.6% of isolates from CB chickens, and 50% of isolates from CK chickens were ESBL producers; all ESBL-positive isolates had the CTX-M-15 genotype. Interestingly, all ESBL-producing Salmonella were revealed as ST16 by multilocus sequence typing. In addition, all CTX-M-15-positive isolates had the genetic platform of blaCTX-M gene (IS26-ISEcp1-blaCTX-M-15-IS903), to the best of our knowledge, this is the first report in Salmonella around the world. The Salmonella ST33 strain (S. Hadar) isolated in this study has never been reported in South Korea. In conclusion, our findings showed that antibiotic-free retail chicken meat products were also largely contaminated with ESBL-producing Salmonella and that their ESBL genes and genetic platforms were the same as those isolated from conventional retail chicken meat products.

Keywords: antibiotic-free poultry, conventional poultry, multilocus sequence typing, extended-spectrum β-lactamase, antimicrobial resistance

Procedia PDF Downloads 274
1417 Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes

Authors: German Hernandez-Alonso, Antonio Lazcano, Arturo Becerra

Abstract:

Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment.

Keywords: bioinformatics tools, distant homology, RNA-binding domains, viral evolution

Procedia PDF Downloads 387
1416 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance

Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres

Abstract:

Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.

Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation

Procedia PDF Downloads 198
1415 Clinical and Molecular Characterization of Ichthyosis at King Abdulaziz Medical City, Riyadh KSA

Authors: Reema K. AlEssa, Sahar Alshomer, Abdullah Alfaleh, Sultan ALkhenaizan, Mohammed Albalwi

Abstract:

Ichthyosis is a disorder of abnormal keratinization, characterized by excessive scaling, and consists of more than twenty subtypes varied in severity, mode of inheritance, and the genes involved. There is insufficient data in the literature about the epidemiology and characteristics of ichthyosis locally. Our aim is to identify the histopathological features and genetic profile of ichthyosis. Method: It is an observational retrospective case series study conducted in March 2020, included all patients who were diagnosed with Ichthyosis and confirmed by histological and molecular findings over the last 20 years in King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. Molecular analysis was performed by testing genomic DNA and checking genetic variations using the AmpliSeq panel. All disease-causing variants were checked against HGMD, ClinVar, Genome Aggregation Database (gnomAD), and Exome Aggregation Consortium (ExAC) databases. Result: A total of 60 cases of Ichthyosis were identified with a mean age of 13 ± 9.2. There is an almost equal distribution between female patients 29 (48%) and males 31 (52%). The majority of them were Saudis, 94%. More than half of patients presented with general scaling 33 (55%), followed by dryness and coarse skin 19 (31.6%) and hyperlinearity 5 (8.33%). Family history and history of consanguinity were seen in 26 (43.3% ), 13 (22%), respectively. History of colloidal babies was found in 6 (10%) cases of ichthyosis. The most frequent genes were ALOX12B, ALOXE3, CERS3, CYP4F22, DOLK, FLG2, GJB2, PNPLA1, SLC27A4, SPINK5, STS, SUMF1, TGM1, TGM5, VPS33B. Most frequent variations were detected in CYP4F22 in 16 cases (26.6%) followed by ALOXE3 6 (10%) and STS 6 (10%) then TGM1 5 (8.3) and ALOX12B 5 (8.3). The analysis of molecular genetic identified 23 different genetic variations in the genes of ichthyosis, of which 13 were novel mutations. Homozygous mutations were detected in the majority of ichthyosis cases, 54 (90%), and only 1 case was heterozygous. Few cases, 4 (6.6%) had an unknown type of ichthyosis with a negative genetic result. Conclusion: 13 novel mutations were discovered. Also, about half of ichthyosis patients had a positive history of consanguinity.

Keywords: ichthyosis, genetic profile, molecular characterization, congenital ichthyosis

Procedia PDF Downloads 194
1414 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation

Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos

Abstract:

The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.

Keywords: air pollution, passive samplers, interferometry, indoor, outdoor

Procedia PDF Downloads 398
1413 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges

Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch

Abstract:

Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.

Keywords: big data interpretation, datathon, systems toxicology, verification

Procedia PDF Downloads 277
1412 Evaluation of Some Trace Elements in Biological Samples of Egyptian Viral Hepatitis Patients under Nutrition Therapy

Authors: Tarek Elnimr, Reda Morsy, Assem El Fert, Aziza Ismail

Abstract:

Hepatitis is an inflammation of the liver. The condition can be self-limiting or can progress to fibrosis, cirrhosis or liver cancer. Disease caused by the hepatitis virus, the virus can cause hepatitis infection, ranging in severity from a mild illness lasting a few weeks to a serious, lifelong illness. A growing body of evidence indicates that many trace elements play important roles in a number of carcinogenic processes that proceed with various mechanisms. To examine the status of trace elements during the development of hepatic carcinoma, we determined the iron, copper, zinc and selenium levels in some biological samples of patients at different stages of viral hepatic disease. We observed significant changes in the iron, copper, zinc and selenium levels in the biological samples of patients hepatocellular carcinoma, relative to those of healthy controls. The mean hair, nail, RBC, serum and whole blood copper levels in patients with hepatitis virus were significantly higher than that of the control group. In contrast the mean iron, zinc, and selenium levels in patients having hepatitis virus were significantly lower than those of the control group. On the basis of this study, we identified the impact of natural supplements to improve the treatment of viral liver damage, using the level of some trace elements such as, iron, copper, zinc and selenium, which might serve as biomarkers for increases survival and reduces disease progression. Most of the elements revealed diverse and random distribution in the samples of the donor groups. The correlation study pointed out significant disparities in the mutual relationships among the trace elements in the patients and controls. Principal component analysis and cluster analysis of the element data manifested diverse apportionment of the selected elements in the scalp hair, nail and blood components of the patients compared with the healthy counterparts.

Keywords: hepatitis, hair, nail, blood components, trace element, nutrition therapy, multivariate analysis, correlation, ICP-MS

Procedia PDF Downloads 407
1411 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 137
1410 Slave Museums and a Site of Democratic Pedagogy: Engagement, Healing and Tolerance

Authors: Elaine Stavro

Abstract:

In our present world where acts of incivility, intolerance and anger towards minority communities is on the rise, the ways museum practices cultivate ethical generosity is of interest. Democratic theorists differ as to how they believe respect can be generated through active participation. Allowing minority communities a role in determining what artifacts will be displayed and how they will be displayed has been an important step in generating respect. In addition, the rise of indigenous museums, slave museums and curators who represent these communities, contribute to the communication of their history of oppression. These institutional practices have been supplemented by the handling of objects, recognition stories and multisensory exhibitions. Psychoanalysis, object relations theorists believe that the handling of objects: amenable objects and responsive listeners will trigger the expression of anomie, alienation and traumatizing experiences. Not only memorializing but engaging with one’s lose in a very personal way can facilitate the process of mourning. Manchester Museum (UK) gathered together Somalian refugees, who in the process of handling their own objects and those offered at the museum, began to tell their stories. Democratic theorists (especially affect theorists or vital materialists or Actor Network theorists) believe that things can be social actants- material objects have agentic capacities that humans should align with. In doing so, they challenge social constructivism that attributes power to interpreted things, but like them they assume an openness or responsiveness to Otherness can be cultivated. Rich sensory experiences, corporeal engagement (devices that involve bodily movement or objects that involve handling) auditory experiences (songs) all contribute to improve one’s responsiveness and openness to Others. This paper will focus specifically on slave museums/ and exhibits in the U.K, the USA., South Africa to explore and evaluate their democratic strategies in cultivating tolerant practices via the various democratic avenues outlined above.

Keywords: democratic pedagogy, slave exhibitions, affect/emotion, object handling

Procedia PDF Downloads 459
1409 Quo Vadis, European Football: An Analysis of the Impact of Over-The-Top Services in the Sports Rights Market

Authors: Farangiz Davranbekova

Abstract:

Subject: The study explores the impact of Over-the-Top services in the sports rights market, focusing on football games. This impact is analysed in the big five European football markets. The research entails how the pay-TV market is combating the disruptors' entry, how the fans are adjusting to these changes and how leagues and football clubs are orienting in the transitional period of more choice. Aims and methods: The research aims to offer a general overview of the impact of OTT players in the football rights market. A theoretical framework of Jenkins’ five layers of convergence is implemented to analyse the transition the sports rights market is witnessing from various angles. The empirical analysis consists of secondary research data as and seven expert interviews from three different clusters. The findings are bound by the combination of the two methods offering general statements. Findings: The combined secondary data as well as expert interviews, conducted on five layers of convergence found: 1. Technological convergence presents that football content is accessible through various devices with innovative digital features, unlike the traditional TV set box. 2. Social convergence demonstrates that football fans multitask using various devices on social media when watching the games. These activities are complementary to traditional TV viewing. 3. Cultural convergence points that football fans have a new layer of fan engagement with leagues, clubs and other fans using social media. Additionally, production and consumption lines are blurred. 4. Economic convergence finds that content distribution is diversifying and/or eroding. Consumers now have more choices, albeit this can be harmful to them. Entry barriers are decreased, and bigger clubs feel more powerful. 5. Global convergence shows that football fans are engaging with not only local fans but with fans around the world that social media sites enable. Recommendation: A study on smaller markets such as Belgium or the Netherlands would benefit the study on the impact of OTT. Additionally, examination of other sports will shed light on this matter. Lastly, once the direct-to-consumer model is fully taken off in Europe, it will be of importance to examine the impact of such transformation in the market.

Keywords: sports rights, OTT, pay TV, football

Procedia PDF Downloads 155
1408 Numerical Simulation of a Single Cell Passing through a Narrow Slit

Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu

Abstract:

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.

Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration

Procedia PDF Downloads 333
1407 Development of Doctoral Education in Armenia (1990 - 2023)

Authors: Atom Mkhitaryan, Astghik Avetisyan

Abstract:

We analyze the developments of doctoral education in Armenia since 1990 and the management process. Education and training of highly qualified personnel are increasingly seen as a fundamental platform that ensures the development of the state. Reforming the national institute for doctoral studies (aspirantura) is aimed at improving the quality of human resources in science, optimizing research topics in accordance with the priority areas of development of science and technology, increasing publication and innovative activities, bringing national science and research closer to the world level and achieving international recognition. We present a number of defended dissertations in Armenia during the last 30 years, the dynamics and the main trends of the development of the academic degree awarding system. We discuss the possible impact of reforming the system of training and certification of highly qualified personnel on the organization of third–level doctoral education (doctoral schools) and specialized / dissertation councils in Armenia. The results of the SWOT analysis of doctoral education and academic degree awarding processes in Armenia are shown. The article presents the main activities and projects aimed at using the advantages and strong points of the National Academy network in order to improve the quality of doctoral education and training. The paper explores the mechanisms of organizational, methodological and infrastructural support for research and innovation activities of doctoral students and young scientists. There are also suggested approaches to the organization of strong networking between research institutes and foreign universities for training and certification of highly qualified personnel. The authors define the role of ISEC in the management of doctoral studies and the establishment of a competitive third-level education for the sphere of research and development in Armenia.

Keywords: doctoral studies, academic degree, PhD, certification, highly qualified personnel, dissertation, research and development, innovation, networking, management of doctoral school

Procedia PDF Downloads 62
1406 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque

Authors: M. Zareh, H. Mohammadi, B. Naser

Abstract:

Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.

Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model

Procedia PDF Downloads 307
1405 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 300
1404 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers

Authors: Elena Carcano, James Ball, Betty Tiko

Abstract:

Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.

Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow

Procedia PDF Downloads 40
1403 Compliance Of Dialysis patients With Nutrition Guidelines: Insights From A Questionnaire

Authors: Zeiler M., Stadler D., Schmaderer C.

Abstract:

Over the years of dialysis treatment, most patients experience significant weight loss. The primary emphasis in earlier research was the underlying mechanism of protein energy wasting and the subsequent malnutrition inflammation syndrome. In the interest to provide an effective and rapid solution for the patients, the aim of this study is identifying individual influences of their assumed reduced dietary intake, such as nausea, appetite loss and taste changes, and to determine whether the patients adhere to their nutrition guidelines. A prospective, controlled study with 38 end-stage renal disease patients was performed using a questionnaire to reflect their diet within the last 12 months. Thereby, the daily intake for the most important macro-and micronutrients was calculated to be compared with the individual KDQOI-guideline value, as well as controls matched in age and gender. The majority of the study population did not report symptoms commonly associated with dialysis, such as nausea or inappetence, and denied any change in dietary behavior since receiving renal replacement therapy. The patients’ daily intake of energy (3080kcal ± 1266) and protein (89,9g [53,4-142,0]) did not differ significantly from the controls (energy intake: 3233kcal ± 1046, p=0,597; protein intake: 103,7g [90,1-125,5], p=0,120). The average difference to the individual calculated KDQOI-guideline was +176,0kcal ± 1156 (p=0,357) for energy intake and -1,75g ± 45,9 (p=0,491) for protein intake. However, there was an observed imbalance in the distribution of macronutrients, with a preference for fats over proteins. The patients’ daily intake of sodium (5,4g [ 2,95-10,1]) was higher than in the controls (4,1g [2,04-5,99], p= 0,058) whereas both values for potassium (3,7g ± 1,84) and phosphorous (1,79g ± 0,91) went significantly below the controls’ values (potassium intake: 4,89g ± 1,74, p=0,014; phosphorous intake: 2,04g ± 0,64, p=0,038). Thus, the values exceeded the calculated KDQOI-recommendation by + 3,3g [0,63-7,90] (p<0,001) for sodium, +1,49g ± 1,84 (p<0,001) for potassium and +0,89g ± 0,91 (p<0,001) for phosphorous. Contrary to the assumption, the patients did not under-eat. Nevertheless, their diets did not align with the recommended values. These findings highlight the need for intervention and education among patients and that regular dietary monitoring could prevent unhealthy nutrition habits. The elaboration of individual references instead of standardized guidelines could increase the compliance to the advised diet so that interdisciplinary comorbidities do not develop or worsen.

Keywords: compliance, dialysis, end-stage renal disease, KDQOI, malnutrition, nutrition guidelines, questionnaire, salt intake

Procedia PDF Downloads 66
1402 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: congestion, ITS strategies, mobility, safety

Procedia PDF Downloads 440
1401 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 391
1400 Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites

Authors: Abou Bakr Merdji, Alaa Mhawish, Xiaofeng Xu, Chunsong Lu

Abstract:

The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites.

Keywords: sahara, AERONET, desert, dust belt, aerosols, optical properties

Procedia PDF Downloads 83
1399 Analysis of the Production Time in a Pharmaceutical Company

Authors: Hanen Khanchel, Karim Ben Kahla

Abstract:

Pharmaceutical companies are facing competition. Indeed, the price differences between competing products can be such that it becomes difficult to compensate them by differences in value added. The conditions of competition are no longer homogeneous for the players involved. The price of a product is a given that puts a company and its customer face to face. However, price fixing obliges the company to consider internal factors relating to production costs and external factors such as customer attitudes, the existence of regulations and the structure of the market on which the firm evolved. In setting the selling price, the company must first take into account internal factors relating to its costs: costs of production fall into two categories, fixed costs and variable costs that depend on the quantities produced. The company cannot consider selling below what it costs the product. It, therefore, calculates the unit cost of production to which it adds the unit cost of distribution, enabling it to know the unit cost of production of the product. The company adds its margin and thus determines its selling price. The margin is used to remunerate the capital providers and to finance the activity of the company and its investments. Production costs are related to the quantities produced: large-scale production generally reduces the unit cost of production, which is an asset for companies with mass production markets. This shows that small and medium-sized companies with limited market segments need to make greater efforts to ensure their profit margins. As a result, and faced with high and low market prices for raw materials and increasing staff costs, the company must seek to optimize its production time in order to reduce loads and eliminate waste. Then, the customer pays only value added. Thus, and based on this principle we decided to create a project that deals with the problem of waste in our company, and having as objectives the reduction of production costs and improvement of performance indicators. This paper presents the implementation of the Value Stream Mapping (VSM) project in a pharmaceutical company. It is structured as follows: 1) determination of the family of products, 2) drawing of the current state, 3) drawing of the future state, 4) action plan and implementation.

Keywords: VSM, waste, production time, kaizen, cartography, improvement

Procedia PDF Downloads 149
1398 Engaging the Terrorism Problematique in Africa: Discursive and Non-Discursive Approaches to Counter Terrorism

Authors: Cecil Blake, Tolu Kayode-Adedeji, Innocent Chiluwa, Charles Iruonagbe

Abstract:

National, regional and international security threats have dominated the twenty-first century thus far. Insurgencies that utilize “terrorism” as their primary strategy pose the most serious threat to global security. States in turn adopt terrorist strategies to resist and even defeat insurgents who invoke the legitimacy of statehood to justify their action. In short, the era is dominated by the use of terror tactics by state and non-state actors. Globally, there is a powerful network of groups involved in insurgencies using Islam as the bastion for their cause. In Africa, there are Boko Haram, Al Shabaab and Al Qaeda in the Maghreb representing Islamic groups utilizing terror strategies and tactics to prosecute their wars. The task at hand is to discover and to use multiple ways of handling the present security threats, including novel approaches to policy formulation, implementation, monitoring and evaluation that would pay significant attention to the important role of culture and communication strategies germane for discursive means of conflict resolution. In other to achieve this, the proposed research would address inter alia, root causes of insurgences that predicate their mission on Islamic tenets particularly in Africa; discursive and non-discursive counter-terrorism approaches fashioned by African governments, continental supra-national and regional organizations, recruitment strategies by major non-sate actors in Africa that rely solely on terrorist strategies and tactics and sources of finances for the groups under study. A major anticipated outcome of this research is a contribution to answers that would lead to the much needed stability required for development in African countries experiencing insurgencies carried out by the use of patterned terror strategies and tactics. The nature of the research requires the use of triangulation as the methodological tool.

Keywords: counter-terrorism, discourse, Nigeria, security, terrorism

Procedia PDF Downloads 484