Search results for: optimal shape design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16230

Search results for: optimal shape design

8370 Microbial Bioproduction with Design of Metabolism and Enzyme Engineering

Authors: Tomokazu Shirai, Akihiko Kondo

Abstract:

Technologies of metabolic engineering or synthetic biology are essential for effective microbial bioproduction. It is especially important to develop an in silico tool for designing a metabolic pathway producing an unnatural and valuable chemical such as fossil materials of fuel or plastics. We here demonstrated two in silico tools for designing novel metabolic pathways: BioProV and HyMeP. Furthermore, we succeeded in creating an artificial metabolic pathway by enzyme engineering.

Keywords: bioinformatics, metabolic engineering, synthetic biology, genome scale model

Procedia PDF Downloads 331
8369 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka

Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana

Abstract:

Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.

Keywords: knowledge, mammography, quality assurance, quality control

Procedia PDF Downloads 328
8368 The Risks of 'Techtopia': Reviewing the Negative Lessons of Smart City Development

Authors: Amanda Grace Ahl, Matthew Brummer

Abstract:

‘Smart cities’ are not always as ‘smart’ as the term suggests, which is not often covered in the associated academic and public policy literatures. In what has become known as the smart city approach to urban planning, governments around the world are seeking to harness the power of information and communications technology with increasingly advanced data analytics to address major social, economic, and environmental issues reshaping the ways people live. The definitional and theoretical boundaries of the smart city framework are broad and at times ambiguous, as is empirical treatment of the topic. However, and for all the disparity, in investigating any number of institutional and policy prescriptions to the challenges faced by current and emerging metropoles, scholarly thought has hinged overwhelmingly on value-positive conceptions of informatics-centered design. From enhanced quality of services, to increased efficiency of resources, to improved communication between societal stakeholders, the smart city design is championed as a technological wellspring capable of providing answers to the systemic issues stymying a utopian image of the city. However, it is argued that this ‘techtopia’, has resulted in myopia within the discipline as to value-negative implications of such planning, such as weaknesses in practicality, scalability, social equity and affordability of solutions. In order to more carefully examine this observation - that ‘stupid’ represents an omitted variable bias in the study of ‘smart’ - this paper reviews critical cases of unsuccessful smart city developments. It is argued that also understanding the negative factors affiliated with the development processes is imperative for the advancement of theoretical foundations, policies, and strategies to further the smart city as an equitable, holistic urban innovation. What emerges from the process-tracing carried out in this study are distinctly negative lessons of smart city projects, the significance of which are vital for understanding how best to conceive smart urban planning in the 21st century.

Keywords: case study, city management, innovation system, negative lessons, smart city development

Procedia PDF Downloads 406
8367 Modern Wars: States Responsibility

Authors: Lakshmi Chebolu

Abstract:

'War’, the word itself, is so vibrant and handcuffs the entire society. Since the beginning of manhood, the world has been evident in constant struggles. However, along with the growth of communities, relations, on the one hand, and disputes, on the other hand, infinitely increased. When states cannot or will not settle their disputes or differences by means of peaceful agreements, weapons are suddenly made to speak. It does not mean states can engage in war whenever they desire. At an international level, there has been a vast development of the law of war in the 20th century. War, it may be internal or international, in all situations, belligerent actors should follow the principles of warfare. With the advent of technology, the shape of war has changed, and it violates fundamental principles without observing basic norms. Conversely, states' attitudes towards international relationships are also undermined to some extent as state parties are not prioritized the communal interest rather than political or individual interest. In spite of the persistent development of communities, still many people are innocent victims of modern wars. It costs a toll on many lives, liberties, and properties and remains a major obstacle to nations' development. Recent incidents in Afghan are a live example to World Nations. We know that the principles of international law cannot be implemented very strictly on perpetrators due to the lacuna in the international legal system. However, the rules of war are universal in nature. The Geneva Convention, 1949 which are the core element of IHL, has been ratified by all 196 States. In fact, very few international treaties received this much of big support from nations. State’s approach towards Modern International Law, places a heavy burden on States practice towards in implementation of law. Although United Nations Security Council possesses certain powers under ‘Pacific Settlement of Disputes’, (Chapter VI) of the United Nations Charter to prevent disputes in a peaceful manner, conversely, this practice has been overlooked for many years due to political interests, favor, etc. Despite international consensus on the prohibition of war and protection of fundamental freedoms and human dignity, still, often, law has been misused by states’. The recent tendencies trigger questions about states’ willingness towards the implementation of the law. In view of the existing practices of nations, this paper aims to elevate the legal obligations of the international community to save the succeeding generations from the scourge of modern war practices.

Keywords: modern wars, weapons, prohibition and suspension of war activities, states’ obligations

Procedia PDF Downloads 77
8366 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 55
8365 Synchronization of a Perturbed Satellite Attitude Motion using Active Sliding Mode Controller

Authors: Djaouida Sadaoui

Abstract:

In this paper, the design procedure of the active sliding mode controller which is a combination of the active controller and the sliding mode controller is given first and then the problem of synchronization of two satellites systems is discussed for the proposed method. Finally, numerical results are presented to evaluate the robustness and effectiveness of the proposed control strategy.

Keywords: active control, sliding mode control, synchronization, satellite attitude

Procedia PDF Downloads 487
8364 Design, Synthesis and in-vitro Antitumor Evaluation of Some Novel Substituted Quinazoline Derivatives

Authors: Adel S. El-Azab, Alaa A. M. Abdel-Aziz, Ibrahim A. Al-Suwaidan, Amer M. Alanazi

Abstract:

A novel series of 2,3,6-trisubstitute quinazolinone were designed, synthesized, and evaluated for their in-vitro antitumor activity. 3 (Benzylideneamino)-6-chloro-2-p-tolylquinazolin-4(3H)-One, 2-[(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-yl)thio]-N-(3,4;5-trimethoxyphenyl) acetamide and 3-(3-benzyl-6-methyl-4-oxo-3, 4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl) propanamide have shown amazing broad spectrum antitumor activity with mean GI50; 15.8, 3.16, and 7.4 μM respectively compared to known Quinazoline Derivatives antitumor drug 5-FU mean GI50=22.6 μM.

Keywords: quinazoline derivatives, in vitro antitumor, synthesis, 5-FU, NCI

Procedia PDF Downloads 535
8363 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: wireless video transceiver, video surveillance camera, H.263 video encoding digital signal processing

Procedia PDF Downloads 359
8362 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development

Authors: Wayne DeFehr

Abstract:

This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.

Keywords: collaboration, education, learning networks, video games

Procedia PDF Downloads 110
8361 Resistance Analysis for a Trimaran

Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa

Abstract:

Importance has been given to resistance analysis for various types of vessels; however explicit guidelines applied to multihull vessels have not been clearly defined. The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes positioning, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. A vessel has the potential to experience less resistance, at a particular range of speeds, for a vast selection of hull positioning. Many potential layouts create opportunities of various design for both the commercial and leisure market.

Keywords: multihull, reistance, trimaran, vessels

Procedia PDF Downloads 470
8360 Culvert Blockage Evaluation Using Australian Rainfall And Runoff 2019

Authors: Rob Leslie, Taher Karimian

Abstract:

The blockage of cross drainage structures is a risk that needs to be understood and managed or lessened through the design. A blockage is a random event, influenced by site-specific factors, which needs to be quantified for design. Under and overestimation of blockage can have major impacts on flood risk and cost associated with drainage structures. The importance of this matter is heightened for those projects located within sensitive lands. It is a particularly complex problem for large linear infrastructure projects (e.g., rail corridors) located within floodplains where blockage factors can influence flooding upstream and downstream of the infrastructure. The selection of the appropriate blockage factors for hydraulic modeling has been subject to extensive research by hydraulic engineers. This paper has been prepared to review the current Australian Rainfall and Runoff 2019 (ARR 2019) methodology for blockage assessment by applying this method to a transport corridor brownfield upgrade case study in New South Wales. The results of applying the method are also validated against asset data and maintenance records. ARR 2019 – Book 6, Chapter 6 includes advice and an approach for estimating the blockage of bridges and culverts. This paper concentrates specifically on the blockage of cross drainage structures. The method has been developed to estimate the blockage level for culverts affected by sediment or debris due to flooding. The objective of the approach is to evaluate a numerical blockage factor that can be utilized in a hydraulic assessment of cross drainage structures. The project included an assessment of over 200 cross drainage structures. In order to estimate a blockage factor for use in the hydraulic model, a process has been advanced that considers the qualitative factors (e.g., Debris type, debris availability) and site-specific hydraulic factors that influence blockage. A site rating associated with the debris potential (i.e., availability, transportability, mobility) at each crossing was completed using the method outlined in ARR 2019 guidelines. The hydraulic results inputs (i.e., flow velocity, flow depth) and qualitative factors at each crossing were developed into an advanced spreadsheet where the design blockage level for cross drainage structures were determined based on the condition relating Inlet Clear Width and L10 (average length of the longest 10% of the debris reaching the site) and the Adjusted Debris Potential. Asset data, including site photos and maintenance records, were then reviewed and compared with the blockage assessment to check the validity of the results. The results of this assessment demonstrate that the estimated blockage factors at each crossing location using ARR 2019 guidelines are well-validated with the asset data. The primary finding of the study is that the ARR 2019 methodology is a suitable approach for culvert blockage assessment that has been validated against a case study spanning a large geographical area and multiple sub-catchments. The study also found that the methodology can be effectively coded within a spreadsheet or similar analytical tool to automate its application.

Keywords: ARR 2019, blockage, culverts, methodology

Procedia PDF Downloads 340
8359 Exergy and Energy Analysis of Pre-Heating Unit of Fluid Catalytic Cracking Unit in Kaduna Refining and Petrochemical Company

Authors: M. Nuhu, S. Bilal, A. A. Hamisu, J. A. Abbas, Y. Z. Aminu, P. O. Helen

Abstract:

Exergy and energy analysis of preheating unit of FCCU of KRPC has been calculated and presented in this study. From the design, the efficiency of each heat exchanger was 86%. However, on completion of this work the efficiencies was calculated to be 39.90%, 55.66%, 56.22%, and 57.14% for 16E02, 16E03, 16E04, and 16E05 respectively. 16E04 has the minimum energy loss of 0.86%. The calculated second law and exergy efficiencies of the system were 43.01 and 56.99% respectively.

Keywords: exergy analysis, ideal work, efficiency, exergy destruction, temperature

Procedia PDF Downloads 430
8358 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 101
8357 Development of a Humanized Anti-CEA Antibody for the Near Infrared Optical Imaging of Cancer

Authors: Paul J Yazaki, Michael Bouvet, John Shively

Abstract:

Surgery for solid gastrointestinal (GI) cancers such as pancreatic, colorectal, and gastric adenocarcinoma remains the mainstay of curative therapy. Complete resection of the primary tumor with negative margins (R0 resection), its draining lymph nodes, and distant metastases offers the optimal surgical benefit. Real-time fluorescence guided surgery (FGS) promises to improve GI cancer outcomes and is rapidly advancing with tumor-specific antibody conjugated fluorophores that can be imaged using near infrared (NIR) technology. Carcinoembryonic Antigen (CEA) is a non-internalizing tumor antigen validated as a surface tumor marker expressed in >95% of colorectal, 80% of gastric, and 60% of pancreatic adenocarcinomas. Our humanized anti-CEA hT84.66-M5A (M5A) monoclonal antibody (mAb)was conjugated with the NHS-IRDye800CW fluorophore and shown it can rapidly and effectively NIRoptical imageorthotopically implanted human colon and pancreatic cancer in mouse models. A limitation observed is that these NIR-800 dye conjugated mAbs have a rapid clearance from the blood, leading to a narrow timeframe for FGS and requiring high doses for effective optical imaging. We developed a novel antibody-fluorophore conjugate by incorporating a PEGylated sidearm linker to shield or mask the IR800 dye’s hydrophobicity which effectively extended the agent’s blood circulation half-life leading to increased tumor sensitivity and lowered normal hepatic uptake. We hypothesized that our unique anti-CEA linked to the fluorophore, IR800 by PEGylated sidewinder, M5A-SW-IR800 will become the next generation optical imaging agent, safe, effective, and widely applicable for intraoperative image guided surgery in CEA expressing GI cancers.

Keywords: optical imaging, anti-CEA, cancer, fluorescence-guided surgery

Procedia PDF Downloads 144
8356 Regulatory Guidelines to Support the Design of Nanosatellite Projects in Mexican Academic Contexts

Authors: Alvaro Armenta-Ramade, Arturo Serrano-Santoyo, Veronica Rojas-Mendizabal, Roberto Conte-Galvan

Abstract:

The availability and affordability of commercial off-the-shell products have brought a major impetus in the development of university projects related to the design, construction and launching of small satellites on a global scale. Universities in emerging economies as well as in least developed countries have been able to develop prototypes of small satellites (cubesats and cansats) with limited budgets. The experience gained in the development of small satellites gives rise to capacity building for designing more complex aerospace systems. This trend has significantly increased the pace and number of aerospace university projects around the world. In the case of Mexico, projects funded by different agencies have been very effective in accelerating the capacity building and technology transfer initiatives in the aerospace ecosystem. However, many of this initiatives have centered their efforts in technology development matters with minimum or no considerations of key regulatory issues related to frequency assignment, management and licensing, as well as launching requirements and measures of mitigation of space debris. These regulatory concerns are fundamental to accomplish successful missions that take into account the complete value chain of an aerospace project. The purpose of this paper is to develop a regulatory framework to support the efforts of educational institutions working on the development of small satellites in Mexico. We base our framework on recommendations from the International Telecommunications Union (ITU), the United Nations Office for Outer Space Affairs (UNOOSA) and other major actors of the Mexican regulatory ecosystem. In order to develop an integrated and cohesive framework, we draw on complexity science to identify the agents, their role and interactions. Our goal is to create a guiding instrument available both in print and online that can also be used in other regions of the world

Keywords: capacity building, complexity science, cubesats, space regulations, small satellites

Procedia PDF Downloads 252
8355 Active Part of the Burnishing Tool Effect on the Physico-Geometric Aspect of the Superficial Layer of 100C6 and 16NC6 Steels

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

Burnishing is a mechanical surface treatment that combines several beneficial effects on the two steel grades studied. The application of burnishing to the ball or to the tip favors a better roughness compared to turning. In addition, it allows the consolidation of the surface layers through work hardening phenomena. The optimal effects are closely related to the treatment parameters and the active part of the device. With an improvement of 78% on the roughness, burnishing can be defined as a finishing operation in the machining range. With a 44% gain in consolidation rate, this treatment is an effective process for material consolidation. These effects are affected by several factors. The factors V, f, P, r, and i have the most significant effects on both roughness and hardness. Ball or tip burnishing leads to the consolidation of the surface layers of both grades 100C6 and 16NC6 steels by work hardening. For each steel grade and its mechanical treatment, the rational tensile curve has been drawn. Lüdwick's law is used to better plot the work hardening curve. For both grades, a material hardening law is established. For 100C6 steel, these results show a work hardening coefficient and a consolidation rate of 0.513 and 44, respectively, compared to the surface layers processed by turning. When 16NC6 steel is processed, the work hardening coefficient is about 0.29. Hardness tests characterize well the burnished depth. The layer affected by work hardening can reach up to 0.4 mm. Simulation of the tests is of great importance to provide the details at the local scale of the material. Conventional tensile curves provide a satisfactory indication of the toughness of 100C6 and 16NC6 materials. A simulation of the tensile curves revealed good agreement between the experimental and simulation results for both steels.

Keywords: 100C6 steel, 16NC6 steel, burnishing, work hardening, roughness, hardness

Procedia PDF Downloads 161
8354 Association of Daily Physical Activity with Diabetes Control in Patients with Type II Diabetes

Authors: Chia-Hsun Chang

Abstract:

Background: Combination of drug treatment, dietary management, and regular exercise can effectively control type II diabetes mellitus (T2DM). Performing daily physical activities other than structured exercise is much easier and whether daily physical activities including work, walking, housework, gardening, leisure exercise, or transportation have a similar effect on diabetes control is not well studied.Aims and Objectives: This study aims to determine whether daily physical activity undertaken by patients with T2DM is associated with their diabetes control. Design: A correlation study with prospective design. Methods: Purposive sampling of 206 patients with T2DM was recruited from a medical center in Central Taiwan. The International Physical Activity Questionnaire was used to assess daily levels of physical activities, and the Diabetes Compliance Questionnaire was used to assess medication and dietary compliance. Data of diabetes control (hemoglobin A1c, HbA1c)were followed up every three months for one year after recruitment. Results: In this study, the average age of the participants was 62.5 years (±10.4 years), and the average duration of diabetes since diagnosis was 13.2 years (±7.8), 112 of the participants were women (54.4%) and 94 of the participants were men (45.6%). The mean HbA1c level was 7.8% (±1.4), and 78.2% of the participants presented with unsatisfactory diabetes control. Because the participants were distributed across a wide age range, and their physical health, activity levels, and comorbidities might have varied with age, the participants were divided into two groups: 121 participants who were younger than 65 years (58.7%) and 85 participants who were older than 65 years (41.3%). Both younger (< 65 years) and older (> 65 years) patients with diabetes engaged in more moderate and low levels of physical activity (89.3% and 87%, respectively). Results showed that the levels of daily physical activity were not significantly associated with diabetes control after adjustment for medication and dietary compliance in both groups. Conclusion: Performing daily physical activity is not significantly correlated with diabetes control. Daily physical activity cannot completely replace exercise. Relevance to Clinical Practice: Health personnel must encourage patients to engage in exercise that is planned, structured, and repetitive for improving diabetes control.

Keywords: daily physical activity, diabetes control, international physical activity questionnaire (IPAQ), type II diabetes mellitus (T2DM)

Procedia PDF Downloads 167
8353 Subjectivities of the Inhabitants and Trajectories of Family Life in Vulnerable Groups

Authors: Mora Kestelman

Abstract:

This paper analyzes various family groups of vulnerable populations as regards their family, educational, labor trajectory and sociability from a relational and historical approach based on archive research and fieldwork. Therefrom, their position and life projects are reconsidered as regards the planning and design of the habitat in which they are immersed. It concludes that a critical review of objectivity and subjectivity emphasizes the nonrational, often unconscious, forces that drive human and non-human relationships to configure identities, which, thus, permanently become constituent to the subjects.

Keywords: social psychology, urban planning, self concept, social networks, identity theory

Procedia PDF Downloads 72
8352 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 122
8351 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed

Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.

Keywords: Antenna, CPW, fractal, GSM, multiband

Procedia PDF Downloads 380
8350 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 127
8349 The Influence of Mechanical and Physicochemical Characteristics of Perfume Microcapsules on Their Rupture Behaviour and How This Relates to Performance in Consumer Products

Authors: Andrew Gray, Zhibing Zhang

Abstract:

The ability for consumer products to deliver a sustained perfume response can be a key driver for a variety of applications. Many compounds in perfume oils are highly volatile, meaning they readily evaporate once the product is applied, and the longevity of the scent is poor. Perfume capsules have been introduced as a means of abating this evaporation once the product has been delivered. The impermeable capsules are aimed to be stable within the formulation, and remain intact during delivery to the desired substrate, only rupturing to release the core perfume oil through application of mechanical force applied by the consumer. This opens up the possibility of obtaining an olfactive response hours, weeks or even months after delivery, depending on the nature of the desired application. Tailoring the properties of the polymeric capsules to better address the needs of the application is not a trivial challenge and currently design of capsules is largely done by trial and error. The aim of this work is to have more predictive methods for capsule design depending on the consumer application. This means refining formulations such that they rupture at the right time for the specific consumer application, not too early, not too late. Finding the right balance between these extremes is essential if a benefit is sought with respect to neat addition of perfume to formulations. It is important to understand the forces that influence capsule rupture, first, by quantifying the magnitude of these different forces, and then by assessing bulk rupture in real-world applications to understand how capsules actually respond. Samples were provided by an industrial partner and the mechanical properties of individual capsules within the samples were characterized via a micromanipulation technique, developed by Professor Zhang at the University of Birmingham. The capsules were synthesized such as to change one particular physicochemical property at a time, such as core: wall material ratio, and the average size of capsules. Analysis of shell thickness via Transmission Electron Microscopy, size distribution via the use of a Mastersizer, as well as a variety of other techniques confirmed that only one particular physicochemical property was altered for each sample. The mechanical analysis was subsequently undertaken, showing the effect that changing certain capsule properties had on the response under compression. It was, however, important to link this fundamental mechanical response to capsule performance in real-world applications. As such, the capsule samples were introduced to a formulation and exposed to full scale stresses. GC-MS headspace analysis of the perfume oil released from broken capsules enabled quantification of what the relative strengths of capsules truly means for product performance. Correlations have been found between the mechanical strength of capsule samples and performance in terms of perfume release in consumer applications. Having a better understanding of the key parameters that drive performance benefits the design of future formulations by offering better guidelines on the parameters that can be adjusted without worrying about the performance effects, and singles out those parameters that are essential in finding the sweet spot for capsule performance.

Keywords: consumer products, mechanical and physicochemical properties, perfume capsules, rupture behaviour

Procedia PDF Downloads 129
8348 Moral Reasoning among Croatian Adolescents with Different Levels of Education

Authors: Nataša Šimić, Ljiljana Gregov, Matilda Nikolić, Andrea Tokić, Ana Proroković

Abstract:

Moral development takes place in six phases which can be divided in a pre-conventional, conventional and post-conventional level. Moral reasoning, as a key concept of moral development theories, involves a process of discernment/inference in doubtful situations. In research to date, education has proved to be a significant predictor of moral reasoning. The aim of this study was to investigate differences in moral reasoning and Kohlberg's phases of moral development between Croatian adolescents with different levels of education. In Study 1 comparisons between the group of secondary school students aged 17-18 (N=192) and the group of university students aged 21-25 (N=383) were made. Study 2 included comparison between university students group (N=69) and non-students group (N=43) aged from 21 to 24 (these two groups did not differ in age). In both studies, the Croatian Test of Moral Reasoning by Proroković was applied. As a measure of moral reasoning, the Index of Moral Reasoning (IMR) was calculated. This measure has some advantages compared to other measures of moral reasoning, and includes individual assessments of deviations from the ‘optimal profile’. Results of the Study 1 did not show differences in the IMR between secondary school students and university students. Both groups gave higher assessments to the arguments that correspond to higher phases of moral development. However, group differences were found for pre-conventional and conventional phases. As expected, secondary school students gave significantly higher assessments to the arguments that correspond to lower phases of moral development. Results of the Study 2 showed that university students, in relation to non-students, have higher IMR. Respecting to phases of moral development, both groups of participants gave higher assessments to the arguments that correspond to the post-conventional phase. Consistent with expectations and previous findings, results of both studies did not confirm gender differences in moral reasoning.

Keywords: education, index of moral reasoning, Kohlberg's theory of moral development, moral reasoning

Procedia PDF Downloads 240
8347 Associations between Sharing Bike Usage and Characteristics of Urban Street Built Environment in Wuhan, China

Authors: Miao Li, Mengyuan Xu

Abstract:

As a low-carbon travel mode, bicycling has drawn increasing political interest in the contemporary Chinese urban context, and the public sharing bikes have become the most popular ways of bike usage in China now. This research aims to explore the spatial-temporal relationship between sharing bike usage and different characteristics of the urban street built environment. In the research, street segments were used as the analytic unit of the street built environment defined by street intersections. The sharing bike usage data in the research include a total of 2.64 million samples that are the entire sharing bike distribution data recorded in two days in 2018 within a neighborhood of 185.4 hectares in the city of Wuhan, China. And these data are assigned to the 97 urban street segments in this area based on their geographic location. The built environment variables used in this research are categorized into three sections: 1) street design characteristics, such as street width, street greenery, types of bicycle lanes; 2) condition of other public transportation, such as the availability of metro station; 3) Street function characteristics that are described by the categories and density of the point of interest (POI) along the segments. Spatial Lag Models (SLM) were used in order to reveal the relationships of specific urban streets built environment characteristics and the likelihood of sharing bicycling usage in whole and different periods a day. The results show: 1) there is spatial autocorrelation among sharing bicycling usage of urban streets in case area in general, non-working day, working day and each period of a day, which presents a clustering pattern in the street space; 2) a statistically strong association between bike sharing usage and several different built environment characteristics such as POI density, types of bicycle lanes and street width; 3) the pattern that bike sharing usage is influenced by built environment characteristics depends on the period within a day. These findings could be useful for policymakers and urban designers to better understand the factors affecting bike sharing system and thus propose guidance and strategy for urban street planning and design in order to promote the use of sharing bikes.

Keywords: big data, sharing bike usage, spatial statistics, urban street built environment

Procedia PDF Downloads 139
8346 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality

Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo

Abstract:

Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.

Keywords: linear model, models and modeling, probability, randomness, sample

Procedia PDF Downloads 114
8345 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process

Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel

Abstract:

In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.

Keywords: discrete element method, physical properties of materials, calibration, granular flow

Procedia PDF Downloads 478
8344 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 168
8343 Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study

Authors: Theodore Panton

Abstract:

As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.

Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily

Procedia PDF Downloads 110
8342 The Effect of Implant Design on the Height of Inter-Implant Bone Crest: A 10-Year Retrospective Study of the Astra Tech Implant and Branemark Implant

Authors: Daeung Jung

Abstract:

Background: In case of patients with missing teeth, multiple implant restoration has been widely used and is inevitable. To increase its survival rate, it is important to understand the influence of different implant designs on inter-implant crestal bone resorption. There are several implant systems designed to minimize loss of crestal bone, and the Astra Tech and Brånemark Implant are two of them. Aim/Hypothesis: The aim of this 10-year study was to compare the height of inter-implant bone crest in two implant systems; the Astra Tech and the Brånemark implant system. Material and Methods: In this retrospective study, 40 consecutively treated patients were utilized; 23 patients with 30 sites for Astra Tech system and 17 patients with 20 sites for Brånemark system. The implant restoration was comprised of splinted crown in partially edentulous patients. Radiographs were taken immediately after 1st surgery, at impression making, at prosthetics setting, and annually after loading. Lateral distance from implant to bone crest, inter-implant distance was gauged, and crestal bone height was measured from the implant shoulder to the first bone contact. Calibrations were performed with known length of thread pitch distance for vertical measurement, and known diameter of abutment or fixture for horizontal measurement using ImageJ. Results: After 10 years, patients treated with Astra Tech implant system demonstrated less inter-implant crestal bone resorption when implants had a distance of 3mm or less between them. In cases of implants that had a greater than 3 mm distance between them, however, there appeared to be no statistically significant difference in crestal bone loss between two systems. Conclusion and clinical implications: In the situation of partially edentulous patients planning to have more than two implants, the inter-implant distance is one of the most important factors to be considered. If it is impossible to make sure of having sufficient inter-implant distance, the implants with less micro gap in the fixture-abutment junction, less traumatic 2nd surgery approach, and the adequate surface topography would be choice of appropriate options to minimize inter-implant crestal bone resorption.

Keywords: implant design, crestal bone loss, inter-implant distance, 10-year retrospective study

Procedia PDF Downloads 155
8341 Influence of Temperature on the Development and Feeding Activity of Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae)

Authors: Pavitra Sharma, A. K. Singh

Abstract:

The establishment of pest population in a habitat is greatly influenced by abiotic factors, such as temperature, photoperiod, and humidity. These factors influence the biology and behavior of insects and their pest status. Nezara viridula (Heteroptera: Pentatomidae), commonly known as southern green stink bug, is economically important pest of legumes. Both nymphs and adult suck the sap from different part of the plant and deteriorate the standing crop. Present study involves effects of temperature on incubation, hatching success and nymphal duration of N. viridula. The results indicated that the development of eggs requires optimal temperature range. Temperature conditions above and below the optimum range affect the incubation period as well as the percent hatchability of eggs. At 19°C, the egg incubation period was longest whereas it was shortest at 27°C. The change in temperature from the optimum condition also affected the hatchability of eggs in N. viridula. Decrease in the hatchability was observed with the decrease in temperature. However, the results were not statistically significant. Decrease in temperature from the optimum temperature to 19°C, also resulted in an increase in nymphal duration of N. viridula. However, no such effect of temperature within the studied range was observed on the morphology of nymphs or adults. Variation in temperature also had no adverse effects on the survival of laboratory bred population of Nezara nymphs. The feeding activity of the bug in relation to photoperiod was assessed by counting the number of punctures on the food surface. The results indicated that day-night regime did not affect the feeding activity of the bug significantly. The present study enhances our knowledge about the effect of environmental factors on the biology of insects and developing the strategy for ‘Integrated Pest Management’ of hemipteran insects by management of the physical factors.

Keywords: development, feeding, hatchability, Nezara viridula

Procedia PDF Downloads 172