Search results for: learning in projects
1361 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India
Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker
Abstract:
Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city
Procedia PDF Downloads 1431360 Motivational Profiles of Choice of Medical Studies: Cross-Sectional Study
Authors: Rajae Tahri, Omar Chokairi, Asmae Saadi, Souad Chaouir
Abstract:
Background: The factors motivating students to choose a medical career is a long-standing topic of publication and discussion. To our knowledge, no national study on the motivation for choosing medical studies has been published to date. Population and methods: This is an observational, descriptive, and cross-sectional study of first-year medical students at the Faculty of Medicine and Pharmacy of Rabat. An anonymous questionnaire comprising 16 questions was developed and distributed to students during Embryology tutorials. The students were free to fill it in or not. The number of students who consented to participate in the survey was 266. The variables studied are the socio-demographic variables of the students and the reasons for choosing medical studies. Results: The most strongly and frequently chosen reasons for choice by our students were saving lives (64.9%), helping others (62.1%), love of medicine (57%), and reducing suffering (56.5%). The comparison of the results according to gender showed a significant difference between the degree of self-motivation of girls compared to that of boys (p <0.001). The reason that stood out the most for them was teamwork. The presence of a health professional in the family was associated with strong extrinsic motivation (p = 0.005). Conclusion: Understanding medical student career choices would improve our knowledge of the factors that influence medical student learning and performance. This knowledge will make it possible to adapt the educational strategies to maintain the motivation of the students throughout their course as well as during their exercise.Keywords: motivation, motivational profiles, medical studies, Morocco
Procedia PDF Downloads 911359 Story Readers’ Self-Reflection on Their past Study Experiences: In Comparison of the Languages Used in a Self-Regulated Learning -Themed Story
Authors: Mayuko Matsuoka
Abstract:
This presentation reports the relationships among EFL(English as a Foreign Language) students’ story comprehension in reading a story written in English and Japanese and empathic reactions. The main focus is put on their self-reflection on past study experiences, one of the empathic reactions after reading a story. One hundred fifty-five first-year university students in Japan read three SRL-themed stories written in English (their foreign language) and those written in Japanese (their mother tongue). The levels of the stories are equivalent, at CEFR(Common European Framework of Reference for Languages) B2 level. The result of categorical correlation analysis shows significant moderate correlations among three empathic reactions in a group reading English versions: having similar emotions as a protagonist, reflecting on their past study experiences, and getting lessons from a story. In addition, the result of logistic regression analysis for the data in a group reading English versions shows the chance of getting lessons from a story significantly approximately doubles if participants’ scores of a comprehension test increases by one, while it approximately triples if participants’ self-reflection occurs. These results do not appear in a group reading Japanese versions. The findings imply that self-reflection may support their comprehension of the English texts and leads to the participants’ getting lessons about SRL.Keywords: comprehension, lesson, self-reflection, SRL
Procedia PDF Downloads 1871358 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 1521357 Challenges for Persons with Disabilities During COVID-19 Pandemic in Thailand
Authors: Tavee Cheausuwantavee
Abstract:
: COVID-19 pandemic significantly has impacted everyone’s life. Persons with disabilities (PWDs) in Thailand have been also effected by COVID-19 situation in many aspects of their lives, while there have been no more appropriate services of the government and providers. Research projects had been only focused on health precaution and protection. Rapid need assessments on populations and vulnerable groups were limited and conducted via social media and an online survey. However, little is known about the real problems and needs of Thai PWDs during the COVID-19 pandemic for an effective plan and integral services for those PWDs. Therefore, this study aims to explore the diverse problems and needs of Thai PWDs in the COVID -19 pandemic. Results from the study can be used by the government and other stakeholders for further effective services. Methods: This study was used a mixed-method design that consisted of both quantitative and qualitative measures. In terms of the quantitative approach, there were 744 PWDs and caregivers of all types of PWDs selected by proportional multistage stratified random sampling according to their disability classification and geographic location. Questionnaires with 59 items regarding participant characteristics, problems, and needs in health, education, employment, and other social inclusion, were distributed to all participants and some caregivers completed questionnaires when PWDs were not able to due to limited communication and/or literacy skills. Completed questionnaires were analyzed by descriptive statistics. For qualitative design, 62 key informants who were PWDs or caregivers were selected by purposive sampling. Ten focus groups, each consisting of 5-6 participants and 7 in-depth interviews from all the groups identified above, were conducted by researchers across five regions. Focus group and in-depth interview guidelines with 6 items regarding problems and needs in health, education, employment, other social inclusion, and their coping during COVID -19 pandemic. Data were analyzed using a modification of thematic content analysis. Results: Both quantitative and qualitative studies showed that PWDs and their caregivers had significant problems and needs all aspects of their life, including income and employment opportunity, daily living and social inclusion, health, and education, respectively. These problems and needs were related to each other, forming a vicious cycle. Participants also learned from negative pandemic to more positive life aspects, including their health protection, financial plan, family cohesion, and virtual technology literacy and innovation. Conclusion and implications: There have been challenges facing all life aspects of PWDs in Thailand during the COVID -19 pandemic, particularly incomes and daily living. All challenges have been the vicious cycle and complicated. There have been also a positive lesson learned of participants from the pandemic. Recommendations for government and stakeholders in the COVID-19 pandemic for PWDs are the following. First, the health protection strategy and policy of PWDs should be promoted together with other quality of life development including income generation, education and social inclusion. Second, virtual technology and alternative innovation should be enhanced for proactive service providers. Third, accessible information during the pandemic for all PWDs must be concerned. Forth, lesson learned from the pandemic should be shared and disseminated for crisis preparation and a positive mindset in the disruptive world.Keywords: challenge, COVID-19, disability, Thailand
Procedia PDF Downloads 791356 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 4661355 Cultural Influence on Social Cognition in Social and Educational Psychology
Authors: Mbah Fidelix Njong, Sabi Emile Forkwa
Abstract:
Social cognition is an aspect of social psychology that focuses on how people process, store and apply information about others and social situations. It lay emphasis on how cognitive processes play in our social interactions. In this article, we try to show how culture can influence our ways of thinking about others, how we feel and interact with the world around us. Social cognitive processes involve perceiving people and how we learn about the people around us. It concerns the mental processes of remembering, thinking and attending to other people with different cultural backgrounds and how we attend to certain information about the world. Especially in an educational setting, students’ learning processes are most often than not influenced by their cultural background. We can also talk of social schemas. That’s people’s mental representation of social patterns and norms. This involves information about the societal role and the expectations of individuals within a group. These cognitive processes can also be influence by culture. There are important cultural differences in social cognition. In any social situation, two individuals may have different interpretations. Each person brings in a unique background of experiences, knowledge, social influence, feelings and cultural variations. Cultural differences can also affect how people interpret social situations. The same social behavior in one cultural setting might have completely different meaning and interpretation if observed or applied in another culture. However, as people interpret behaviors and bring out meaning from the interpretations, they act based on their beliefs about situations they are confronted with. This helps to reinforce and reproduce the cultural norms that influence their social cognition.Keywords: social cognition, social schema, cultural influence, psychology
Procedia PDF Downloads 981354 Effects of Practical Activities on Performance among Biology Students in Zaria Education Zone, Kaduna State Nigeria
Authors: Abdullahi Garba
Abstract:
The study investigated the effects of practical activities on performance among biology students in Zaria education zone, Kaduna State, Nigeria. The population consists of 18 public schools in the Zaria Education Zone with a total number of 4,763 students. A random sample of 115 students was selected from the population in the study area. The study design was quasi-experimental, which adopted the pre-test, post-test experimental, and control group design. The experimental group was exposed to practical activities, while the control group was taught with the lecture method. A validated instrument, a biology performance test (BPT) with a reliability coefficient of 0.82, was used to gather data which were analyzed using a t-test and paired sample t-test. Two research questions and hypotheses guided the study. The hypotheses were tested at p≤0.05 level of significance. Findings revealed that: there was a significant difference in the academic performance of students exposed to practical activities compared to their counterparts; there was no significant difference in performance between male and female Biology students exposed to practical activities. The recommendation given was that practical activities should be encouraged in the teaching and learning of Biology for better understanding. The Federal and State Ministry of Education should sponsor biology teachers for training and retraining of teachers to improve the academic performance of students in the subject.Keywords: biology, practical, activity, performance
Procedia PDF Downloads 841353 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem
Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez
Abstract:
Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.Keywords: biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering
Procedia PDF Downloads 2971352 Explaining the Acceptance and Adoption of Digital Technologies: Digital Government in Saudi Arabia
Authors: Mohammed Alhamed
Abstract:
This research examines the factors influencing the acceptance and adoption of digital technologies in Saudi Arabia’s government sector by focusing on government employees' attitudes toward digital transformation initiatives. As digital technologies increasingly integrate into public sectors worldwide, there is a requirement to enhance citizen empowerment and government-public interactions as well as understand their impact in unique socio-political contexts like Saudi Arabia. The study aims to explore user attitudes, identify the main challenges, and investigate factors that affect the intention to use digital applications in governmental settings. The study employs a mixed-methods approach by combining quantitative and qualitative data collection to provide a comprehensive view of digital government application adoption. Data was collected through two online surveys administered to 870 government employees and face-to-face semi-structured interviews with 24 participants. This dual approach allows for both statistical analysis and thematic exploration, which provides a deeper understanding of user behaviour, perceived benefits, challenges and attitudes toward these digital applications. Quantitative data were analyzed to identify significant variables influencing adoption, while qualitative responses were coded thematically to uncover recurring themes related to user trust, security, usability and socio-political influences. The results indicate that digital government applications are largely valued for their ability to increase efficiency and accessibility and streamline processes like online documentation and inter-departmental coordination. However, the study highlights that security, privacy, and confidentiality concerns constitute substantial barriers to adoption, with participants calling for stronger cybersecurity measures and data protection policies. Moreover, usability emerged as a key theme that intuitively interfaces in encouraging adoption as respondents emphasized the importance of user-friendly. Additionally, the study found that Saudi Arabia’s unique cultural and organizational dynamics impact acceptance levels with factors like hierarchical structures and varying levels of digital literacy shaping user attitudes. A significant limitation of the study is its exclusive focus on government employees, which may limit the generalizability of the findings to other stakeholder groups, such as the general public. Despite this, the study offers valuable views for policymakers. This, in turn, suggests best practices and guidelines that could enhance the design and implementation of digital government projects. By addressing the identified barriers and leveraging the factors that drive adoption, the study underscores the potential for digital government initiatives to improve efficiency, transparency and responsiveness in Saudi Arabia's public sector. Furthermore, these findings may provide a roadmap for similar countries aiming to adopt digital government solutions within comparable socio-political and economic contexts.Keywords: acceptance, adoption, digital technologies, digital government, Saudi Arabia
Procedia PDF Downloads 251351 Oracle JDE Enterprise One ERP Implementation: A Case Study
Authors: Abhimanyu Pati, Krishna Kumar Veluri
Abstract:
The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning
Procedia PDF Downloads 2511350 Leveraging on Youth Agricultural Extension Outreach: Revisiting Young Farmer’s Club in Schools in Edo State, Nigeria
Authors: Christopher A. Igene, Jonathan O. Ighodalo
Abstract:
Youths play a critical role in the agricultural transformation of any developing nation such as Nigeria. Hence, the preparation of any nation for productive life depends on the policies and programmes designed for its youths. Studies have shown that children and youths contribute significantly in agricultural activities. Youths have vigour and prone to physical work, they constitute a great percentage of labour force in the country. It is of necessity that every policy on national development must of necessity take cognizance of the youths. Hence, the focus on youths in agricultural extension outreaches most especially, the young farmers club. It is an out-of-school education in agriculture and home economics for rural youth through learning by doing. Young farmers club in schools enables the young to learn and acquire those attributes that will enable them grown into useful and mature adult. There appears to be numerous constrains in the use of youths in extension, they are inadequate personnel, poor funding of agricultural sector, poor marketing channels, lack of good roads, others are poor input and lack of information. However, there is a need for Agricultural Development Programme (ADP) to organize workshop for secondary students and agricultural science teachers, schools to organize seminars and workshops for secondary schools who are members of Young Farmers Club (YFC). ADP should also organize agricultural show to encourage students to be members of Young Farmers Club (YFC).Keywords: agricultural extension, agricultural role, students, youths, young farmers club (YFC)
Procedia PDF Downloads 1731349 Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India
Authors: Shilpa Vasavada
Abstract:
One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on.Keywords: gender equality, approaches, differential impact, resource allocation
Procedia PDF Downloads 1981348 Podcasting: A Tool for an Enhanced Learning Experience of Introductory Courses to Science and Engineering Students
Authors: Yaser E. Greish, Emad F. Hindawy, Maryam S. Al Nehayan
Abstract:
Introductory courses such as General Chemistry I, General Physics I and General Biology need special attention as students taking these courses are usually at their first year of the university. In addition to the language barrier for most of them, they also face other difficulties if these elementary courses are taught in the traditional way. Changing the routine method of teaching of these courses is therefore mandated. In this regard, podcasting of chemistry lectures was used as an add-on to the traditional and non-traditional methods of teaching chemistry to science and non-science students. Podcasts refer to video files that are distributed in a digital format through the Internet using personal computers or mobile devices. Pedagogical strategy is another way of identifying podcasts. Three distinct teaching approaches are evident in the current literature and include receptive viewing, problem-solving, and created video podcasts. The digital format and dispensing of video podcasts have stabilized over the past eight years, the type of podcasts vary considerably according to their purpose, degree of segmentation, pedagogical strategy, and academic focus. In this regard, the whole syllabus of 'General Chemistry I' course was developed as podcasts and were delivered to students throughout the semester. Students used the podcasted files extensively during their studies, especially as part of their preparations for exams. Feedback of students strongly supported the idea of using podcasting as it reflected its effect on the overall understanding of the subject, and a consequent improvement of their grades.Keywords: podcasting, introductory course, interactivity, flipped classroom
Procedia PDF Downloads 2681347 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1381346 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot
Procedia PDF Downloads 1801345 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1101344 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 2041343 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2711342 Evidence Based Policy Studies: Examining Alternative Policy Practice towards Improving Enrolment to Higher Education in Nigeria
Authors: Muftahu Jibirin Salihu, Hazri Jamil
Abstract:
The persisting challenge of access and enrolment to higher education in commonwealth countries has been reported in several studies, including reports of the international organization such as World Bank, UNESCO among others however from the macro perspective. The overarching aim of this study is to examine alternative policy practices towards improving access to university education in Nigeria at meso level of policy practice from evidence base policy studies using one university as a case. The study adopted a qualitative approach to gain insightful understanding on the issue of the study employing a semi-structure interview and policy documents as the means for obtaining the data and other relevant information for the study. The participants of the study were purposively chosen which comprise of a number of individuals from the selected university and other related organization which responsible for the policies development and implementation of Nigerian higher education system. From the findings of the study, several initiatives have been taken at meso level to address this challenge including the introduction of the University Matriculation Program as an alternative route for enhancing to access to the university education. However, the study further provided a number of recommendations which aimed at improving access to university education such as improving the entry requirements, society orientation on university education and the issue of ranking of certificate among the Nigerian higher institutions of learning.Keywords: policy practice, access, enrolment, university, education, Nigeria
Procedia PDF Downloads 2751341 “It Takes a Community to Save a Child”: A Qualitative Analysis of Child Trafficking Interventions from Practitioner Perspectives
Authors: Crispin Rakibu Mbamba
Abstract:
Twenty-two years after the adoption of the United Nation Trafficking Protocol, evidence suggest that child trafficking continues to rise. Community level factors, like poverty which creates the conditions for children’s vulnerability is key to the rise in trafficking cases in Ghana. Albeit, growing evidence suggestthat despite the vulnerabilities, communities have the capacity to prevent and address child trafficking issues. This study contributes to this positive agenda by exploring the ways in which communities (and the key actors) in Ghana contribute to child trafficking interventions.The study objective is explored through in-depth interviews with practitioners (including social workers) from an organization working in trafficking hotspots in Ghana. Interviews wereanalyzed thematically with the help of HyperRESEARCH software. From the in-depth interviews, three themes were identified as the ways in which communities are involved in child trafficking interventions: 1) engagement of community leaders, 2) community-led anti-trafficking committees and 3) knowledge about trafficking. Albeit the cultural differences, evidence on the instrumental role of community chiefs and leaders provide important learning on how to harness trafficking intervention measures and ensure better child protection practices. Based on the findings, we recommend the need to intensify trafficking awareness campaigns in rural communities where education is lacking to contribute to United Nations (UN) promoting Just, Peaceful and Inclusive societies’ mandate.Keywords: child trafficking, community interventions, knowledge on trafficking, human trafficking intervention
Procedia PDF Downloads 1191340 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4061339 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1001338 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 1691337 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2661336 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 781335 An Investigation into Problems Confronting Pre-Service Teachers of French in South-West Nigeria
Authors: Modupe Beatrice Adeyinka
Abstract:
French, as a foreign language in Nigeria, is pronounced to be the second official language and a compulsory subject in the primary school level; hence, colleges of education across the nation are saddled with the responsibility of training teachers for the subject. However, it has been observed that this policy has not been fully implemented, for French teachers in training, do face many challenges, of which translation is chief. In a bid to investigate the major cause of the perceived translation problem, this study examined French translation problems of pre-service teachers in selected colleges of education in the southwest, Nigeria. This study adopted a descriptive survey research design. The simple random sampling technique was used to select four colleges of education in the southwest, where 100 French students were randomly selected by selecting 25 from each school. The pre-service teachers’ French translation problems’ questionnaire (PTFTPQ) was used as an instrument while four research questions were answered and three null hypotheses were tested. Among others, the findings revealed that students do have problems with false friends, though mainly with its interpretation when attempting French-English translation and vice versa; majority of the students make use of French dictionary as a way out and found the material very useful for their understanding of false friends. Teachers were, therefore, urged to attend in-service training where they would be exposed to new and emerging strategies, approaches and methodologies of French language teaching that will make students overcome the challenge of translation in learning French.Keywords: false friends, French language, pre-service teachers, source language, target language, translation
Procedia PDF Downloads 1661334 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development
Authors: Poteet Frances, Glovinski Ira
Abstract:
INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation
Procedia PDF Downloads 641333 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 1561332 A Study on the Application of Generative AI Tools for Chinese Writing Feedback in Non-Fiction Writing Instruction
Authors: Stephanie Liu Lu
Abstract:
The course "University Chinese," an essential component of the curriculum in Hong Kong's higher education institutions, plays a crucial role in enhancing students' creative expression, narrative construction, argumentative prowess, and literary skills through its focus on non-fiction writing. Despite its significance, the comprehensive syllabus, coupled with limited classroom time, often restricts adequate practice opportunities and leads to delayed feedback, negatively impacting students' preparation for assessments. This paper investigates the potential of generative artificial intelligence (AI) tools, such as ChatGPT and POE, to provide personalized and immediate feedback for writing tasks. The primary goal of this research is to evaluate student receptiveness to AI-generated feedback and compare it to traditional feedback provided solely by human instructors. To achieve this, participants will be systematically divided into two groups: one receiving feedback from both instructors and AI tools, and a control group that receives feedback exclusively from instructors. The study will thoroughly analyze the revisions made to texts after receiving feedback, focusing particularly on enhancements in the quality of content and language proficiency across three dimensions: content/theme, language, and structural logic. This investigation aims to determine whether AI tools can enhance the efficiency of teaching practices, encourage autonomous learning, and significantly improve the overall quality of students' written work.Keywords: AI-generated feedback, Chinese writing, non-fiction writing, student receptiveness
Procedia PDF Downloads 9