Search results for: financial models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9327

Search results for: financial models

1497 An AI-generated Semantic Communication Platform in HCI Course

Authors: Yi Yang, Jiasong Sun

Abstract:

Almost every aspect of our daily lives is now intertwined with some degree of human-computer interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology, and more. Our HCI courses, named the Media and Cognition course, are constantly updated to reflect state-of-the-art technological advancements such as virtual reality, augmented reality, and artificial intelligence-based interactions. For more than a decade, our course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which have gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. Our latest version of the Human-Computer Interaction course practices a semantic communication platform based on AI-generated techniques. The purpose of this semantic communication is twofold: to extract and transmit task-specific information while ensuring efficient end-to-end communication with minimal latency. An AI-generated semantic communication platform evaluates the retention of signal sources and converts low-retain ability visual signals into textual prompts. These data are transmitted through AI-generated techniques and reconstructed at the receiving end; on the other hand, visual signals with a high retain ability rate are compressed and transmitted according to their respective regions. The platform and associated research are a testament to our students' growing ability to independently investigate state-of-the-art technologies.

Keywords: human-computer interaction, media and cognition course, semantic communication, retainability, prompts

Procedia PDF Downloads 116
1496 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 167
1495 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 96
1494 Investment and Economic Growth: An Empirical Analysis for Tanzania

Authors: Manamba Epaphra

Abstract:

This paper analyzes the causal effect between domestic private investment, public investment, foreign direct investment and economic growth in Tanzania during the 1970-2014 period. The modified neo-classical growth model that includes control variables such as trade liberalization, life expectancy and macroeconomic stability proxied by inflation is used to estimate the impact of investment on economic growth. Also, the economic growth models based on Phetsavong and Ichihashi (2012), and Le and Suruga (2005) are used to estimate the crowding out effect of public investment on private domestic investment on one hand and foreign direct investment on the other hand. A correlation test is applied to check the correlation among independent variables, and the results show that there is very low correlation suggesting that multicollinearity is not a serious problem. Moreover, the diagnostic tests including RESET regression errors specification test, Breusch-Godfrey serial correlation LM test, Jacque-Bera-normality test and white heteroskedasticity test reveal that the model has no signs of misspecification and that, the residuals are serially uncorrelated, normally distributed and homoskedastic. Generally, the empirical results show that the domestic private investment plays an important role in economic growth in Tanzania. FDI also tends to affect growth positively, while control variables such as high population growth and inflation appear to harm economic growth. Results also reveal that control variables such as trade openness and life expectancy improvement tend to increase real GDP growth. Moreover, a revealed negative, albeit weak, association between public and private investment suggests that the positive effect of domestic private investment on economic growth reduces when public investment-to-GDP ratio exceeds 8-10 percent. Thus, there is a great need for promoting domestic saving so as to encourage domestic investment for economic growth.

Keywords: FDI, public investment, domestic private investment, crowding out effect, economic growth

Procedia PDF Downloads 291
1493 Prevalence of Mycobacterium Tuberculosis Infection and Rifampicin Resistance among Presumptive Tuberculosis Cases Visiting Tuberculosis Clinic of Adare General Hospital, Southern Ethiopia

Authors: Degineh Belachew Andarge, Tariku Lambiyo Anticho, Getamesay Mulatu Jara, Musa Mohammed Ali

Abstract:

Introduction: Tuberculosis (TB) is a communicable chronic disease causedby Mycobacterium tuberculosis (MTB). About one-third of the world’s population is latently infected with MTB. TB is among the top 10 causes of mortality throughout the globe from a single pathogen. Objective: The aim of this study was to determine the prevalence of tuberculosis,rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis, and associated factors among presumptive tuberculosis cases attending the tuberculosis clinic of Adare General Hospital located in Hawassa city. Methods: A hospital-based cross-sectional study was conducted among 321 tuberculosis suspected patients from April toJuly 2018. Socio-demographic, environmental, and behavioral data were collected using a structured questionnaire. Sputumspecimens were analyzed using GeneXpert. Data entry was made using Epi info version 7 and analyzed by SPSS version 20. Logistic regression models were used to determine the risk factors. A p-value less than 0.05 was taken as a cut point. Results: In this study, the prevalence of Mycobacterium tuberculosis was 98 (30.5%) with 95% confidence interval (25.5–35.8), and the prevalence of rifampicin-resistant/multidrug-resistantMycobacterium tuberculosis among the 98 Mycobacteriumtuberculosis confirmed cases was 4 (4.1%). The prevalence of rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosisamong the tuberculosis suspected patients was 1.24%. Participants who had a history of treatment with anti-tuberculosisdrugs were more likely to develop rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis. Conclusions: This study identified relatively high rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis amongtuberculosis suspected patients in the study area. Early detection of drug-resistant Mycobacterium tuberculosis should be givenenough attention to strengthen the management of tuberculosis cases and improve direct observation therapy short-course and eventually minimize the spread of rifampicin-resistant tuberculosis strain in the community.

Keywords: rifampicin resistance, mycobacterium tuberculosis, risk factors, prevalence of TB

Procedia PDF Downloads 111
1492 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui

Abstract:

Technological advances in the construction sector are helping to make smart cities a reality by means of cyber-physical systems (CPS). CPS integrate information and the physical world through the use of information communication technologies (ICT). An increasingly common goal in the built environment is to integrate building information models (BIM) with the Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation, and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts, and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) how suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) what are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities, and cybersecurity. The results of these findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Keywords: BIM, cybersecurity, digital twins, IoT, urban cities

Procedia PDF Downloads 169
1491 Stoa: Urban Community-Building Social Experiment through Mixed Reality Game Environment

Authors: Radek Richtr, Petr Pauš

Abstract:

Social media nowadays connects people more tightly and intensively than ever, but simultaneously, some sort of social distance, incomprehension, lost of social integrity appears. People can be strongly connected to the person on the other side of the world but unaware of neighbours in the same district or street. The Stoa is a type of application from the ”serious games” genre- it is research augmented reality experiment masked as a gaming environment. In the Stoa environment, the player can plant and grow virtual (organic) structure, a Pillar, that represent the whole suburb. Everybody has their own idea of what is an acceptable, admirable or harmful visual intervention in the area they live in; the purpose of this research experiment is to find and/or define residents shared subconscious spirit, genius loci of the Pillars vicinity, where residents live in. The appearance and evolution of Stoa’s Pillars reflect the real world as perceived by not only the creator but also by other residents/players, who, with their actions, refine the environment. Squares, parks, patios and streets get their living avatar depictions; investors and urban planners obtain information on the occurrence and level of motivation for reshaping the public space. As the project is in product conceptual design phase, the function is one of its most important factors. Function-based modelling makes design problem modular and structured and thus decompose it into sub-functions or function-cells. Paper discuss the current conceptual model for Stoa project, the using of different organic structure textures and models, user interface design, UX study and project’s developing to the final state.

Keywords: augmented reality, urban computing, interaction design, mixed reality, social engineering

Procedia PDF Downloads 229
1490 Impact of Leadership Styles on Work Motivation and Organizational Commitment among Faculty Members of Public Sector Universities in Punjab

Authors: Wajeeha Shahid

Abstract:

The study was designed to assess the impact of transformational and transactional leadership styles on work motivation and organizational commitment among faculty members of universities of Punjab. 713 faculty members were selected as sample through convenient random sampling technique. Three self-constructed questionnaires namely Leadership Styles Questionnaire (LSQ), Work Motivation Questionnaire (WMQ) and Organizational Commitment Questionnaire (OCMQ) were used as research instruments. Major objectives of the study included assessing the effect and impact of transformational and transactional leadership styles on work motivation and organizational commitment. Theoretical frame work of the study included Idealized Influence, Inspirational Motivation, Intellectual Stimulation, Individualized Consideration, Contingent Rewards and Management by Exception as independent variables and Extrinsic motivation, Intrinsic motivation, Affective commitment, Continuance commitment and Normative commitment as dependent variables. SPSS Version 21 was used to analyze and tabulate data. Cronbach's Alpha reliability, Pearson Correlation and Multiple regression analysis were applied as statistical treatments for the analysis. Results revealed that Idealized Influence correlated significantly with intrinsic motivation and Affective commitment whereas Contingent rewards had a strong positive correlation with extrinsic motivation and affective commitment. Multiple regression models revealed a variance of 85% for transformational leadership style over work motivation and organizational commitment. Whereas transactional style as a predictor manifested a variance of 79% for work motivation and 76% for organizational commitment. It was suggested that changing organizational cultures are demanding more from their leadership. All organizations need to consider transformational leadership style as an important part of their equipment in leveraging both soft and hard organizational targets.

Keywords: leadership styles, work motivation, organizational commitment, faculty member

Procedia PDF Downloads 311
1489 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique

Authors: Veysel Çelik, Aynur Aker, Ebru Güç

Abstract:

Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.

Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy

Procedia PDF Downloads 127
1488 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis

Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni

Abstract:

The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.

Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis

Procedia PDF Downloads 275
1487 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models

Authors: Ainouna Bouziane

Abstract:

The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.

Keywords: electron tomography, supported catalysts, nanometrology, error assessment

Procedia PDF Downloads 89
1486 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor

Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti

Abstract:

In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.

Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking

Procedia PDF Downloads 161
1485 Global Digital Peer-to-Peer (P2P) Lending Platform Empowering Rural India: Determinants of Funding

Authors: Ankur Mehra, M. V. Shivaani

Abstract:

With increasing digitization, the world is coming closer, not only in terms of informational flow but also in terms of capital flows. And micro-finance institutions (MFIs) have perfectly leveraged this digital world by resorting to the innovative digital social peer-to-peer (P2P) lending platforms, such as, Kiva. These digital P2P platforms bring together micro-borrowers and lenders from across the world. The main objective of this study is to understand the funding preferences of social investors primarily from developed countries (such as US, UK, Australia), lending money to borrowers from rural India at zero interest rates through Kiva. Further, the objective of this study is to increase awareness about such a platform among various MFIs engaged in providing micro-loans to those in need. The sample comprises of India based micro-loan applications posted by various MFIs on Kiva lending platform over the period Sept 2012-March 2016. Out of 7,359 loans, 256 loans failed to get funded by social investors. On an average a micro-loan with 30 days to expiry gets fully funded in 7,593 minutes or 5.27 days. 62% of the loans raised on Kiva are related to livelihood, 32.5% of the loans are for funding basic necessities and balance 5.5% loans are for funding education. 47% of the loan applications have more than one borrower; while, currency exchange risk is on the social lenders for 45% of the loans. Controlling for the loan amount and loan tenure, the analyses suggest that those loan applications where the number of borrowers is more than one have a lower chance of getting funded as compared to the loan applications made by a sole borrower. Such group applications also take more time to get funded. Further, loan application by a solo woman not only has a higher chance of getting funded but as such get funded faster. The results also suggest that those loan applications which are supported by an MFI that has a religious affiliation, not only have a lower chance of getting funded, but also take longer to get funded as compared to the loan applications posted by secular MFIs. The results do not support cross-border currency risk to be a factor in explaining the determinants of loan funding. Finally, analyses suggest that loans raised for the purpose of earning livelihood and education have a higher chance of getting funded and such loans get funded faster as compared to the loans applied for purposes related to basic necessities such a clothing, housing, food, health, and personal use. The results are robust to controls for ‘MFI dummy’ and ‘year dummy’. The key implication from this study is that global social investors tend to develop an emotional connect with single woman borrowers and consequently they get funded faster Hence, MFIs should look for alternative ways for funding loans whose purpose is to meet basic needs; while, more loans related to livelihood and education should be raised via digital platforms.

Keywords: P2P lending, social investing, fintech, financial inclusion

Procedia PDF Downloads 144
1484 Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach

Authors: Shyaka Eugene

Abstract:

The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment.

Keywords: expansion pressure, energy release rate, soundless chemical demolition agent, crack propagation

Procedia PDF Downloads 63
1483 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane

Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi

Abstract:

We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.

Keywords: dyes, methylene blue, membrane, activated carbon

Procedia PDF Downloads 82
1482 Effect of Cooking Time, Seed-To-Water Ratio and Soaking Time on the Proximate Composition and Functional Properties of Tetracarpidium conophorum (Nigerian Walnut) Seeds

Authors: J. O. Idoko, C. N. Michael, T. O. Fasuan

Abstract:

This study investigated the effects of cooking time, seed-to-water ratio and soaking time on proximate and functional properties of African walnut seed using Box-Behnken design and Response Surface Methodology (BBD-RSM) with a view to increase its utilization in the food industry. African walnut seeds were sorted washed, soaked, cooked, dehulled, sliced, dried and milled. Proximate analysis and functional properties of the samples were evaluated using standard procedures. Data obtained were analyzed using descriptive and inferential statistics. Quadratic models were obtained to predict the proximate and functional qualities as a function of cooking time, seed-to-water ratio and soaking time. The results showed that the crude protein ranged between 11.80% and 23.50%, moisture content ranged between 1.00% and 4.66%, ash content ranged between 3.35% and 5.25%, crude fibre ranged from 0.10% to 7.25% and carbohydrate ranged from 1.22% to 29.35%. The functional properties showed that soluble protein ranged from 16.26% to 42.96%, viscosity ranged from 23.43 mPas to 57 mPas, emulsifying capacity ranged from 17.14% to 39.43% and water absorption capacity ranged from 232% to 297%. An increase in the volume of water used during cooking resulted in loss of water soluble protein through leaching, the length of soaking time and the moisture content of the dried product are inversely related, ash content is inversely related to the cooking time and amount of water used, extraction of fat is enhanced by increase in soaking time while increase in cooking and soaking times result into decrease in fibre content. The results obtained indicated that African walnut could be used in several food formulations as protein supplement and binder.

Keywords: African walnut, functional properties, proximate analysis, response surface methodology

Procedia PDF Downloads 397
1481 Energy Consumption and Economic Growth Nexus: a Sustainability Understanding from the BRICS Economies

Authors: Smart E. Amanfo

Abstract:

Although the exact functional relationship between energy consumption and economic growth and development remains a complex social science, there is a sustained growing of agreement among energy economists and the likes on direct or indirect role of energy use in the development process, and as sustenance for many of societal achieved socio-economic and environmental developments in any economy. According to OECD, the world economy will double by 2050 in which the two members of BRICS (Brazil, Russia, India, China and South Africa) countries: China and India lead. There is a global apprehension that if countries constituting the epicenter of the present and future economic growth follow the same trajectory as during and after Industrial Revolution, involving higher energy throughputs, especially fossil fuels, the already known and models predicted threats of climate change and global warming could be exacerbated, especially in the developing economies. The international community’s challenge is how to address the trilemma of economic growth, social development, poverty eradication and stability of the ecological systems. This paper aims at providing the estimates of economic growth, energy consumption, and carbon dioxide emissions using BRICS members’ panel data from 1980 to 2017. The preliminary results based on fixed effect econometric model show positive significant relationship between energy consumption and economic growth. The paper further identified a strong relationship between economic growth and CO2 emissions which suggests that the global agenda of low-carbon-led growth and development is not a straight forward achievable The study therefore highlights the need for BRICS member states to intensify low-emissions-based production and consumption policies, increase renewables in order to avoid further deterioration of climate change impacts.

Keywords: BRICS, sustainability, sustainable development, energy consumption, economic growth

Procedia PDF Downloads 96
1480 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 205
1479 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 71
1478 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 138
1477 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams

Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann

Abstract:

A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.

Keywords: damage mechanics, finite element, steel structures, web openings

Procedia PDF Downloads 175
1476 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru

Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar

Abstract:

Nowadays, heritage building information modeling (HBIM) is considered an efficient tool to represent and manage information of cultural heritage (CH). The basis of this tool relies on a 3D model generally obtained from a cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired level of development (LOD), level of information (LOI), grade of generation (GOG), as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit, and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings, and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills, and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models families, respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI, and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources since the BIM software used has a free student license.

Keywords: cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit

Procedia PDF Downloads 145
1475 Income Inequality and Its Effects on Household Livelihoods in Parker Paint Community, Liberia

Authors: Robertson Freeman

Abstract:

The prime objective of this research is to examine income inequality and its effects on household livelihoods in Parker Paint. Many researchers failed to address the potential threat of income inequality on diverse household livelihood indicators, including health, food, housing, transport and many others. They examine and generalize the effects of income differentials on household livelihoods by addressing one indicator of livelihood security. This research fills the loopholes of previous research by examining the effects of income inequality and how it affects the livelihoods of households, taking into consideration livelihood indicators including health, food security, and transport. The researcher employed the mixed research method to analyze the distribution of income and solicit opinions of household heads on the effects of their monthly income on their livelihoods. Age and sex structure, household composition, type of employment and educational status influence income inequality. The level of income, Lorenz curve and the Gini coefficient was mutually employed to calculate and determine the level of income inequality. One hundred eighty-two representing 96% of household heads are employed while 8, representing 4%, are unemployed. However, out of a total number of 182 employed, representing 96%, 27 people representing 14%, are employed in the formal private sector, while 110, representing 58%, are employed in the private informal sector. Monthly average income, savings, investments and unexpected circumstances affect the livelihood of households. Infrastructural development and wellbeing should be pursued by reducing expenditure earmarked in other sectors and channeling the funds towards the provision of household needs. One of the potent tools for consolidating household livelihoods is to initiate livelihood empowerment programs. Government and private sector agencies should establish more health insurance schemes, providing mosquito nets, immunization services, public transport, as well as embarking on feeding programs, especially in the remote areas of Parker paint. To climax the research findings, self-employment, entrepreneurship and the general private sector employment is a transparent double-edged sword. If employed in the private sector, there is the likelihood to increase one’s income. However, this also induces the income gap between the rich and poor since many people are exploited by affluence, thereby relegating the poor from the wealth hierarchy. Age and sex structure, as well as type of employment, should not be overlooked since they all play fundamental roles in influencing income inequality. Savings and investments seem to play a positive role in reducing income inequality. However, savings and investment in this research affect livelihoods negatively. It behooves mankind to strive and work hard to the best of ability in earning sufficient income and embracing measures to retain his financial strength. In so doing, people will be able to provide basic household needs, celebrate the reduction in unemployment and dependence and finally ensure sustainable livelihoods.

Keywords: income, inequality, livelihood, pakerpaint

Procedia PDF Downloads 126
1474 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 144
1473 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 209
1472 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 122
1471 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 299
1470 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 165
1469 A Stepped Care mHealth-Based Approach for Obesity with Type 2 Diabetes in Clinical Health Psychology

Authors: Gianluca Castelnuovo, Giada Pietrabissa, Gian Mauro Manzoni, Margherita Novelli, Emanuele Maria Giusti, Roberto Cattivelli, Enrico Molinari

Abstract:

Diabesity could be defined as a new global epidemic of obesity and being overweight with many complications and chronic conditions. Such conditions include not only type 2 diabetes, but also cardiovascular diseases, hypertension, dyslipidemia, hypercholesterolemia, cancer, and various psychosocial and psychopathological disorders. The financial direct and indirect burden (considering also the clinical resources involved and the loss of productivity) is a real challenge in many Western health-care systems. Recently the Lancet journal defined diabetes as a 21st-century challenge. In order to promote patient compliance in diabesity treatment reducing costs, evidence-based interventions to improve weight-loss, maintain a healthy weight, and reduce related comorbidities combine different treatment approaches: dietetic, nutritional, physical, behavioral, psychological, and, in some situations, pharmacological and surgical. Moreover, new technologies can provide useful solutions in this multidisciplinary approach, above all in maintaining long-term compliance and adherence in order to ensure clinical efficacy. Psychological therapies with diet and exercise plans could better help patients in achieving weight loss outcomes, both inside hospitals and clinical centers and during out-patient follow-up sessions. In the management of chronic diseases clinical psychology play a key role due to the need of working on psychological conditions of patients, their families and their caregivers. mHealth approach could overcome limitations linked with the traditional, restricted and highly expensive in-patient treatment of many chronic pathologies: one of the best up-to-date application is the management of obesity with type 2 diabetes, where mHealth solutions can provide remote opportunities for enhancing weight reduction and reducing complications from clinical, organizational and economic perspectives. A stepped care mHealth-based approach is an interesting perspective in chronic care management of obesity with type 2 diabetes. One promising future direction could be treating obesity, considered as a chronic multifactorial disease, using a stepped-care approach: -mhealth or traditional based lifestyle psychoeducational and nutritional approach. -health professionals-driven multidisciplinary protocols tailored for each patient. -inpatient approach with the inclusion of drug therapies and other multidisciplinary treatments. -bariatric surgery with psychological and medical follow-up In the chronic care management of globesity mhealth solutions cannot substitute traditional approaches, but they can supplement some steps in clinical psychology and medicine both for obesity prevention and for weight loss management.

Keywords: clinical health psychology, mhealth, obesity, type 2 diabetes, stepped care, chronic care management

Procedia PDF Downloads 345
1468 Determinants of Sustainable Supplier Selection: An Exploratory Study of Manufacturing Tunisian’s SMEs

Authors: Ahlem Dhahri, Audrey Becuwe

Abstract:

This study examines the adoption of sustainable purchasing practices among Tunisian SMEs, with a focus on assessing how environmental and social sustainability maturity affects the implementation of sustainable supplier selection (SSS) criteria. Using institutional theory to classify coercive, normative, and mimetic pressures, as well as emerging drivers and barriers, this study explores the institutional factors influencing sustainable purchasing practices and the specific barriers faced by Tunisian SMEs in this area. An exploratory, abductive qualitative research design was adopted for this multiple case study, which involved 19 semi-structured interviews with owners and managers of 17 Tunisian manufacturing SMEs. The Gioia method was used to analyze the data, thus enabling the identification of key themes and relationships directly from the raw data. This approach facilitated a structured interpretation of the institutional factors influencing sustainable purchasing practices, with insights drawn from the participants' perspectives. The study reveals that Tunisian SMEs are at different levels of sustainability maturity, with a significant impact on their procurement practices. SMEs with advanced sustainability maturity integrate both environmental and social criteria into their supplier selection processes, while those with lower maturity levels rely on mostly traditional criteria such as cost, quality, and delivery. Key institutional drivers identified include regulatory pressure, market expectations, and stakeholder influence. Additional emerging drivers—such as certifications and standards, economic incentives, environmental commitment as a core value, and group-wide strategic alignment—also play a critical role in driving sustainable procurement. Conversely, the study reveals significant barriers, including economic constraints, limited awareness, and resource limitations. It also identifies three main categories of emerging barriers: (1) logistical and supply chain constraints, including retailer/intermediary dependency, tariff regulations, and a perceived lack of direct responsibility in B2B supply chains; (2) economic and financial constraints; and (3) operational barriers, such as unilateral environmental responsibility, a product-centric focus and the influence of personal relationships. Providing valuable insights into the role of sustainability maturity in supplier selection, this study is the first to explore sustainable procurement practices in the Tunisian SME context. Integrating an analysis of institutional drivers, including emerging incentives and barriers, provides practical implications for SMEs seeking to improve sustainability in procurement. The results highlight the need for stronger regulatory frameworks and support mechanisms to facilitate the adoption of sustainable practices among SMEs in Tunisia.

Keywords: Tunisian SME, sustainable supplier selection, institutional theory, determinant, qualitative study

Procedia PDF Downloads 15