Search results for: uniform loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2423

Search results for: uniform loading

1673 Finite Element Analysis of Debonding Propagation in FM73 Joint under Static Loading

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive joining aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore, 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: adhesive joint, debonding, fracture, LEFM, APDL

Procedia PDF Downloads 587
1672 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases

Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim

Abstract:

Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.

Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force

Procedia PDF Downloads 389
1671 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics

Procedia PDF Downloads 283
1670 Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices

Authors: Aziz Zoubir, Sefir Yamina, Djelti Redouan, Bentata Samir

Abstract:

The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect).

Keywords: Dimer Fibonacci Height Barrier superlattices, singular extended states, exact Airy function, transfer matrix formalism

Procedia PDF Downloads 502
1669 Investigation of Solvent Effect on Viscosity of Lubricant in Disposable Medical Devices

Authors: Hamed Bagheri, Seyd Javid Shariati

Abstract:

The effects of type and amount of solvent on lubricant which is used in disposable medical devices are investigated in this article. Two kinds of common solvent, n-Hexane and n-Heptane, are used. The mechanical behavior of syringe has shown that n-Heptane has better mixing ratio and also more effective spray process in the barrel of syringe than n-Hexane because of similar solubility parameter to silicon oil. The results revealed that movement of plunger in the barrel increases when pure silicone is used because non-uniform film is created on the surface of barrel, and also, it seems that the form of silicon is converted from oil to gel due to sterilization process. The results showed that the convenient mixing ratio of solvent/lubricant oil is 80/20.

Keywords: disposal medical devices, lubricant oil, solvent effect, solubility parameter

Procedia PDF Downloads 227
1668 Determination of Antibiotic Residues in Carcasses of Cows Slaughtered in Amol City by Four-Plate-Test Method

Authors: Arezou Ghadi, Nasrollah Vahedi, Azam Sinkakarimi

Abstract:

For determination of antibiotic residues in slaughtered cow carcasses of Amol city in Iran, sampling has done from 100 heads of cow. For this purpose, the microbiological F.P.T (Four-Plate Test) method was used. Basis of this method, a clear zone is creating around the leachate on the plate that already has cultured a uniform layer of under test bacteria on agar plate. In this study from 100 heads of cow carcasses, at least 75 cases (75%) in one of the tested organs (muscle-liver-kidney) have been antibiotic residues. Also, it has been found that kidney have the most positive cases (60%) than other organs (liver and muscle), then the liver (58%) and finally are muscles (51%).

Keywords: antibiotic residues, agar plate test, cow carcass

Procedia PDF Downloads 448
1667 Simulation of Photovoltaic Array for Specified Ratings of Converter

Authors: Smita Pareek, Ratna Dahiya

Abstract:

The power generated by solar photovoltaic (PV) module depends on surrounding irradiance, temperature, shading conditions, and shading pattern. This paper presents a simulation of photovoltaic module using Matlab/Simulink. PV Array is also simulated by series and parallel connections of modules and their characteristics curves are given. Further PV module topology/configuration are proposed for 5.5kW inverter available in the literature. Shading of a PV array either complete or partial can have a significant impact on its power output and energy yield; therefore, the simulated model characteristics curves (I-V and P-V) are drawn for uniform shading conditions (USC) and then output power, voltage and current are calculated for variation in insolation for shading conditions. Additionally the characteristics curves are also given for a predetermined shadowing condition.

Keywords: array, series, parallel, photovoltaic, partial shading

Procedia PDF Downloads 560
1666 Approximation Algorithms for Peak-Demand Reduction

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.

Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics

Procedia PDF Downloads 90
1665 Awareness of Organic Products in Bangladesh: A Marketing Perspective

Authors: Sheikh Mohammed Rafiul Huque

Abstract:

Bangladesh since its inception has been an economy that is fuelled by agriculture and agriculture has significant contribution to the GDP of Bangladesh. The agriculture of Bangladesh predominantly and historically dependent on organic sources of raw material though the place has taken in decades by inorganic sources of raw materials due to the high demand of food for rapidly growing of population. Meanwhile, a new market segment, which is niche market, has been evolving in the urban area in favor of organic products, though 71.1% population living in rural areas is dependent mainly on conventional products. The new market segment is search of healthy and safer source of food and they could believe that organic products are the solution of that. In Bangladesh, food adulteration is very common practices among the shop-keepers to extend the shelf life of raw vegetables and fruits. The niche group of city dwellers is aware about the fact and gradually shifting their buying behavior to organic products. A recent survey on organic farming revealed that 16,200 hectares under organic farming in recent time, which was only 2,500 hectares in 2008. This study is focused on consumer awareness of organic products and tried to explore the factors affecting organic food consumption among high income group of people. The hypothesis is developed to explore the effect of gender (GENDER), ability to purchase (ABILITY) and health awareness (HEALTH) on purchase intention (INTENTION). A snowball sampling was administered among the high income group of people in Dhaka city among 150 respondents. In this sampling process the study could identify only those samples who has consume organic products. A Partial Least Square (PLS) method was used to analyze data using path analysis. It was revealed from the analysis that coefficient determination R2 is 0.829 for INTENTION endogenous latent variable. This means that three latent variables (GENDER, ABILITY, and HEALTH) significantly explain 82.9% of the variance in INTENTION of purchasing organic products. Moreover, GENDER solely explains 6.3% and 8.6% variability of ABILITY and HEALTH respectively. The inner model suggests that HEALTH has strongest negative effect on INTENTION (-0.647) followed by ABILITY (0.344) and GENDER (0.246). The hypothesized path relationship between ABILITY->INTENTION, HEALTH->INTENTION and GENDER->INTENTION are statistically significant. Furthermore, the hypothesized path relationship between GENDER->ABILITY (0.262) and GENDER->HEALTH (-0.292) also statistically significant. The purpose of the study is to demonstrate how an organic product producer can improve his participatory guarantee system (PGS) while marketing the products. The study focuses on understanding gender (GENDER), ability (ABILITY) and health (HEALTH) factors while positioning the products (INTENTION) in the mind of the consumer. In this study, the respondents are found to care about high price and ability to purchase variables with loading -0.920 and 0.898. They are good indicators of ability to purchase (ABILITY). The marketers should consider about price of organic comparing to conventional products while marketing, otherwise, that will create negative intention to buy with a loading of -0.939. Meanwhile, it is also revealed that believability of chemical free component in organic products and health awareness affects health (HEALTH) components with high loading -0.941 and 0.682. The study analyzes that low believability of chemical free component and high price of organic products affects intension to buy. The marketers should not overlook this point while targeting the consumers in Bangladesh.

Keywords: health awareness, organic products, purchase ability, purchase intention

Procedia PDF Downloads 372
1664 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL surface concentration (LSC), magnetic field, computational fluid dynamics, porous wall

Procedia PDF Downloads 403
1663 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair

Authors: H. Pasternak, A. Chwastek

Abstract:

The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.

Keywords: cyclic loading, fatigue crack, post-weld treatment, seams’ repair

Procedia PDF Downloads 256
1662 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature

Procedia PDF Downloads 103
1661 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 40
1660 Theoretical Density Study of Winding Yarns on Spool

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of work is to define the distribution density of winding yarn on cylindrical and conical bobbins. It is known that parallel winding gives greater density and more regular distribution, but the unwinding of yarn is much more difficult for following process. The conical spool has an enormous advantage during unwinding and may contain a large amount of yarns, but the density distribution is not regular because of difference in diameters. The variation of specific density over the reel height is explained generally by the sudden change of winding speed due to direction movement variation of yarn. We determined the conditions of uniform winding and developed a calculate model to the change of the specific density of winding wire over entire spool height.

Keywords: textile, cylindrical bobbins, conical bobbins, parallel winding, cross winding

Procedia PDF Downloads 373
1659 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack.

Keywords: batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution

Procedia PDF Downloads 475
1658 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes

Authors: Kuo-Wei Liao, Jessica Gitomarsono

Abstract:

Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.

Keywords: bridge, reliability, multi-hazards, scour

Procedia PDF Downloads 370
1657 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy

Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas

Abstract:

In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.

Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell

Procedia PDF Downloads 396
1656 Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application

Authors: Jihoon Park, Sungkon Yu, Byungjo Jung

Abstract:

Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale.

Keywords: blood vessel, optical tissue phantom, optical property, skin tissue, pigmentation

Procedia PDF Downloads 446
1655 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow

Procedia PDF Downloads 263
1654 Magnesium Alloys for Biomedical Applications Processed by Severe Plastic Deformation

Authors: Mariana P. Medeiros, Amanda P. Carvallo, Augusta Isaac, Milos Janecek, Peter Minarik, Mayerling Martinez Celis, Roberto. R. Figueiredo

Abstract:

The effect of high pressure torsion processing on mechanical properties and corrosion behavior of pure magnesium and Mg-Zn, Mg-Zn-Ca, Mg-Li-Y, and Mg-Y-RE alloys is investigated. Micro-tomography and SEM characterization are used to estimate corrosion rate and evaluate non-uniform corrosion features. The results show the severe plastic deformation processing improves the strength of all magnesium alloys, but deformation localization can take place in the Mg-Zn-Ca and Mg-Y-RE alloys. The occurrence of deformation localization is associated with low strain rate sensitivity in these alloys and with severe corrosion localization. Pure magnesium and Mg-Zn and Mg-Li-Y alloys display good corrosion resistance with low corrosion rate and maintained integrity after 28 days of immersion in Hank`s solution.

Keywords: magnesium alloys, severe plastic deformation, corrosion, biodegradable alloys

Procedia PDF Downloads 103
1653 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications

Authors: Hammad Aziz

Abstract:

Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.

Keywords: intumescent coating, char, SEM, TGA

Procedia PDF Downloads 424
1652 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions

Authors: Matheus Fernando Pereira, Varese Salvador Timoteo

Abstract:

In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.

Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source

Procedia PDF Downloads 236
1651 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: Mustafa Reşit Haboğlu, Ali Kurşun , Şafak Aksoy, Halil Aykul, Numan Behlül Bektaş

Abstract:

A thermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: laminated composites, thermo elastic stress, finite element method.

Procedia PDF Downloads 494
1650 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding

Authors: Aiman Alshare, Sahar Qaadan

Abstract:

A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.

Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm

Procedia PDF Downloads 359
1649 Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle

Authors: Pei-Syuan Ruan, Ya-Chi Yu, Shao-Wen Chen, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.

Keywords: conductivity probes, rod bundles, two-phase flow, void fraction

Procedia PDF Downloads 157
1648 Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch

Authors: Sadok Aboubakr

Abstract:

The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch.

Keywords: stress intensity factor, pressure, Young's modulus, Poisson's ratio, Shear modulus, Longueur du pipeline, the angle of crack, crack length

Procedia PDF Downloads 355
1647 Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions

Authors: M. Salih Taci, N. Tayebi, I. Bozkır

Abstract:

This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation.

Keywords: autotransformer modeling, autotransformer simulation, step-up autotransformer, step-down autotransformer, polarity

Procedia PDF Downloads 310
1646 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 125
1645 Additive Manufacturing with Ceramic Filler

Authors: Irsa Wolfram, Boruch Lorenz

Abstract:

Innovative solutions with additive manufacturing applying material extrusion for functional parts necessitate innovative filaments with persistent quality. Uniform homogeneity and a consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that is rarely at the disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories that investigate complex material topics and technology science to leverage the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillersofferedfrom the market. Therefore, we introduce a prototypal laboratory methodology scalable to tailoredprimal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. - A desktop single-screw extruder serves as a core device for the experiments. Custom-made filaments encapsulate the ceramic fillers and serve with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder, preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. Itis 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms the steady dispersion of the ceramic particles in the composite filament. - This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it deliversconsistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types beyond and above ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses to create their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.

Keywords: additive manufacturing, ceramic composites, complex filament, industrial application

Procedia PDF Downloads 103
1644 Modeling a Feedback Concept in a Spherical Thundercloud Cell

Authors: Zemlianskaya Daria, Egor Stadnichuk, Ekaterina Svechnikova

Abstract:

Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches' dynamics in the electric fields can lead to their multiplication via gamma-rays and positrons, which is called relativistic feedback. This report shows that a non-uniform electric field geometry leads to the new RREAs multiplication mechanism - “geometric feedback”, which occurs due to the exchange of high-energy particles between different accelerating regions within a thundercloud. This report will present the results of the simulation in GEANT4 of feedback in a spherical cell. Necessary conditions for the occurrence of geometric feedback were obtained from it.

Keywords: electric field, GEANT4, gamma-rays, relativistic runaway electron avalanches (RREAs), relativistic feedback, the thundercloud

Procedia PDF Downloads 169