Search results for: recognition primed decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5564

Search results for: recognition primed decision

4814 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 38
4813 Design of a Pneumonia Ontology for Diagnosis Decision Support System

Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi

Abstract:

Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.

Keywords: Clinical decision support system, Diagnostic errors, Ontology, Pneumonia

Procedia PDF Downloads 189
4812 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight

Procedia PDF Downloads 149
4811 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making

Authors: Hossein Afzali

Abstract:

Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.

Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty

Procedia PDF Downloads 186
4810 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey

Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff

Abstract:

This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.

Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction

Procedia PDF Downloads 168
4809 Disclosure Experience of Working People Living with HIV/AIDS in Nigeria: A Qualitative Research

Authors: Dorcas I. Adeoye

Abstract:

Disclosure experience of people living with HIV/AIDS has been a public health concern, it has also been attributed to effective way of limiting the spread of the disease. However, among working people living with HIV, it is a great issue that attracts several consequences, it is also a way of managing HIV and balancing their emotional, physical and social aspect of life. The economic, social and political aspect has been affected since the emergent of HIV. It is also not a medical problem that only needs a medical approach; it is a psychological problem that needs not to be ignored. Work attitude model and consequential theory were used to understanding the experience of disclosure or non-disclosure in the workplace. Work attitude model explains the job satisfaction and the organisational commitment of an employee that have effect on the decision and well-being in the workplace; it can also influence a decision to disclosure one’s health condition, however, consequential theory comes to play when a decision is being made, either to disclose or not, and that will attract consequences (either negative or positive) in which ever decision made. A phenomenological study was conducted among employed people that are infected with HIV/AIDS in a south-eastern region of Nigeria where unemployment rate is high. A one-to-one semi-structured interview was used to gather in-depth information about the experience of 20 working people living with HIV. Participants were recruited in a hospital and for some, hospital serves as their workplace. The outcome of the research shows that participants’ experiences vary. One thing that stood out and was found similar among all participants including participants that have disclosed, planning to disclose, or never intended to disclose, is that workplace is a place not to be trusted despite the positive outcomes disclosure could give in the workplace, and disclosure decision needs to be carefully taken. The study was concluded with recommendations that cover various aspects; however, clearer policies should be followed by all organisations to protect people living with HIV in the workplace.

Keywords: disclosure, employment, HIV/AIDS, Nigeria, workplace

Procedia PDF Downloads 304
4808 Child Protection Decision Making in England and Finland: A Comparative Analysis

Authors: Rachel Falconer

Abstract:

Background: The United Nations Convention on the Rights of the Child sets out the duties placed on signatory nations to take measures to protect children from all forms of violence, abuse, neglect and maltreatment. The systems for ensuring this protection vary globally, shaped by national welfare policies. In England and Finland, past research has highlighted differences in how child protection issues are framed and how state agencies respond. However, less is known about how such differences impact processes of social work judgment and decision making in practice. Method: Data was collected as part of a wider PhD project in three stages. First, social workers in sites across England and Finland were asked to complete a short questionnaire. Participants were then asked to comment on two constructed case vignettes, and were interviewed about their experiences of child protection decision making at the point of referral. Interviews were analyzed using NVivo to draw out key themes. Findings: There were similarities in how the English and Finnish social workers responded to the case vignettes; for example, participants in both countries expressed concerns about similar risk factors and all felt further assessment was needed. Differences were observed, in particular, in regard to the sources of support and guidance participants referred to, with the English social workers appearing to rely more upon managerial input for their decisions than the Finnish social workers. These findings suggest evidence for two distinct decision making approaches: ‘supervised’ and ‘supported’ judgement. Implications for practice: The findings have relevance to the conference theme of research and evaluation of social work practice, and support the findings of previous studies that have emphasized the significance of organizational factors in child protection decision making. The comparative methodology has also helped to demonstrate how organizational factors can influence practice in different child protection system ‘orientations’. The presentation will discuss the potential practice implications of ‘supervised’, manager-led approaches to decision making as contrasted with ‘supported’, team-led approaches, inviting discussion about the relevance of these findings for social work in other countries.

Keywords: child protection, comparative research, decision making, social work, vignettes

Procedia PDF Downloads 253
4807 Analytic Hierarchy Process for the Container Terminal Choice from Multiple Terminals within the Port of Colombo

Authors: G. M. B. P. Abeysekara, W. A. D. C. Wijerathna

Abstract:

Terminal choice from the multiple terminals region is not a simple decision and it is very complex, because shipping lines should consider on influential factors for the terminal choice at once according to their requirement. Therefore, terminal choice is a multiple criterion decision making (MCDM) situation under a specially designed decision hierarchy. Identification of perspective of shipping lines regarding terminal choice is vital important for the decision makers regarding container terminals. Thus this study is evaluated perception on main and feeder shipping lines’ regarding port of Colombo container terminals, and ranked terminals according to shipping lines preference. Analytic Hierarchy Process (AHP) model is adapted to this study, since it has features similar to the MCDM, it is weighted every influential factor by using pair wise comparisons, and consistency of the decision makers’ judgments are checked to evaluate trustworthiness of gathered data. And rating method is used to rank the terminals within Port of Colombo by assigning particular preference values with respect to the criteria and sub criteria. According to the findings of this study, main lines’ mainly concern on water depth of approach channel, depth of berth, handling charges and handling equipment facilities. And feeder lines’ main concerns were handling equipment facilities, loading and discharging efficiency, depth of berth and handling charges. Findings of the study suggested concentrating regarding the emphasized areas in order to enhance the competitiveness of terminals, and to increase number of vessel callings at the Port of Colombo. Application of above finding of the terminals within Port of Colombo lead to a far better competition among terminals and would uplift the overall level of services.

Keywords: AHP, Main and feeder shipping lines, criteria, sub criteria

Procedia PDF Downloads 420
4806 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 160
4805 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components

Authors: Mikel Alonso López

Abstract:

The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.

Keywords: emotion, consumer behaviour, feelings, decision making

Procedia PDF Downloads 347
4804 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database

Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang

Abstract:

For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.

Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree

Procedia PDF Downloads 224
4803 The Acceptable Roles of Artificial Intelligence in the Judicial Reasoning Process

Authors: Sonia Anand Knowlton

Abstract:

There are some cases where we as a society feel deeply uncomfortable with the use of Artificial Intelligence (AI) tools in the judicial decision-making process, and justifiably so. A perfect example is COMPAS, an algorithmic model that predicts recidivism rates of offenders to assist in the determination of their bail conditions. COMPAS turned out to be extremely racist: it massively overpredicted recidivism rates of Black offenders and underpredicted recidivism rates of white offenders. At the same time, there are certain uses of AI in the judicial decision-making process that many would feel more comfortable with and even support. Take, for example, a “super-breathalyzer,” an (albeit imaginary) tool that uses AI to deliver highly detailed information about the subject of the breathalyzer test to the legal decision-makers analyzing their drunk-driving case. This article evaluates the point at which a judge’s use of AI tools begins to undermine the public’s trust in the administration of justice. It argues that the answer to this question depends on whether the AI tool is in a role in which it must perform a moral evaluation of a human being.

Keywords: artificial intelligence, judicial reasoning, morality, technology, algorithm

Procedia PDF Downloads 81
4802 Career Decisiveness among Indian College Going Students: A Psychosocial Study

Authors: Preeti Nakhat, Neeta Sinha

Abstract:

Career plays an indispensable role in shaping one’s outlook on life. Choosing right career adds 'feathers to the life' whereas wrong career decision 'takes a toll 'in one’s life. It is pivotal for the students to know the career opportunities related to their field where they can escalate and excel. With the aim to comprehend certainty and indecisiveness in career decision among college students, a study will be conducted. The study focuses to gain insight on decisiveness and indecisiveness of career among the students. The hypotheses for the study are (1) There is no relation between the medium of education (vernacular/English medium) and career decisiveness among the college students. (2) There is no relation between the faculty(science, commerce, arts)chosen and career decisiveness. (3)There is no relation between father’s qualification and career decisiveness. To test the aforementioned hypotheses, a survey questionnaire will be used. The questionnaire is 'Career decision scale' by Samuel H. Osipow. This study will include 200 college going students. The data will be collected from first, second, third, and fourth year students. Statistical analysis of the data collected with be done through SPSS/Excel calculation and then the hypotheses will be tested.

Keywords: career decisiveness, career indecisiveness, college students, career

Procedia PDF Downloads 300
4801 Extended Literature Review on Sustainable Energy by Using Multi-Criteria Decision Making Techniques

Authors: Koray Altintas, Ozalp Vayvay

Abstract:

Increased global issues such as depletion of sources, environmental problems and social inequality triggered public awareness towards finding sustainable solutions in order to ensure the well-being of the current as well as future generations. Since energy plays a significant role in improved social and economic well-being and is imperative on both industrial and commercial wealth creation, it is a must to develop a standardized set of metrics which makes it possible to indicate the present condition relative to conditions in the past and to develop any perspective which is required to frame actions for the future. This is not an easy task by considering the complexity of the issue which requires integrating economic, environmental and social aspects of sustainable energy. Multi-criteria decision making (MCDM) can be considered as a form of integrated sustainability evaluation and a decision support approach that can be used to solve complex problems featuring; conflicting objectives, different forms of data and information, multi-interests and perspectives. On that matter, MCDM methods are useful for providing solutions to complex energy management problems. The aim of this study is to review MCDM approaches that can be used for examining sustainable energy management. This study presents an insight into MCDM techniques and methods that can be useful for engineers, researchers and policy makers working in the energy sector.

Keywords: sustainable energy, sustainability criteria, multi-criteria decision making, sustainability dimensions

Procedia PDF Downloads 330
4800 Leadership, A Toll to Support Innovations and Inventive Education at Universities

Authors: Peter Balco, Miriam Filipova

Abstract:

The university education is generally concentrated on acquiring theoretical as well as professional knowledge. The right mix of these knowledges is key in creating innovative as well as inventive solutions. Despite the understanding of their importance by the professional community, these are promoted with problems and misunderstanding. The reason for the failure of many non-traditional, innovative approaches is the ignorance of Leadership in the process of their implementation, ie decision-making. In our paper, we focused on the role of Leadership in the educational process and how this knowledge can support decision-making, the selection of a suitable, optimal solution for practice.

Keywords: leadership, soft skills, innovation, invention, knowledge

Procedia PDF Downloads 189
4799 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making

Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab

Abstract:

Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.

Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning

Procedia PDF Downloads 353
4798 Marketing Mix Factor Affecting Decision Making Behavior in Using Fitness Service

Authors: Siri-Orn Champatong

Abstract:

The objectives of this research were to study the attitude of service marketing mix that affected the decision making behavior to use fitness service in case of the fitness in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 of consumers who have used the service and interested in using the service in the future. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the attitude toward overall marketing mix was at moderate level. For particulars, attitude toward product and service aspects were at good level, however, attitude toward price, place, promotion, people, physical evidence and service quality aspects were at moderate level. The hypothesis testing results showed that attitude toward each aspect affected word of mouth, however, attitude toward product and service, place, promotion, people and physical evidence affected tendency to use fitness service at .05 statistically significant level.

Keywords: decision making behavior, fitness, marketing mix, marketing service

Procedia PDF Downloads 342
4797 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: construction safety, contractor selection, decision support system, relational database

Procedia PDF Downloads 280
4796 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises

Authors: S. Alyami, S. Mohammad

Abstract:

These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.

Keywords: construction SMEs, culture, decision making, empowerment, risk management

Procedia PDF Downloads 119
4795 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation, assets

Procedia PDF Downloads 92
4794 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
4793 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 355
4792 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods

Authors: A. Senthil Kumar, V. Murali Bhaskaran

Abstract:

In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.

Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)

Procedia PDF Downloads 286
4791 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects

Authors: Ayedh Alqahtani, Andrew Whyte

Abstract:

Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.

Keywords: building projects, capital cost, life cycle cost, maintenance costs, operation costs

Procedia PDF Downloads 546
4790 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
4789 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
4788 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 47
4787 The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research

Authors: Mikel Alonso López

Abstract:

In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI.

Keywords: decision making, emotions, fMRI, consumer behaviour

Procedia PDF Downloads 479
4786 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 182
4785 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 148