Search results for: real-time optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3260

Search results for: real-time optimization

2510 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall

Authors: Hamid Nikzad, Shinta Yoshitomi

Abstract:

In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 158
2509 Bi-Criteria Vehicle Routing Problem for Possibility Environment

Authors: Bezhan Ghvaberidze

Abstract:

A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.

Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory

Procedia PDF Downloads 485
2508 Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector

Authors: F. Noto, F. De Persio, V. Bellini, G. Costa. F. Mammoliti, F. Meddi, C. Sutera, G. M. Urcioli

Abstract:

One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics.

Keywords: FEM analysis, bonding, SBS tracker, mechanical structure

Procedia PDF Downloads 339
2507 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
2506 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks

Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar

Abstract:

Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.

Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization

Procedia PDF Downloads 258
2505 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 477
2504 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
2503 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 125
2502 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 126
2501 The Effect of Land Cover on Movement of Vehicles in the Terrain

Authors: Krisstalova Dana, Mazal Jan

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths

Procedia PDF Downloads 425
2500 The Effects of Key Factors in Traffic-Oriented Road Alignment Adjustment for Low Emissions Profile: A Case Study in Norway

Authors: Gaylord K. Booto, Marinelli Giuseppe, Helge Brattebø, Rolf A. Bohne

Abstract:

Emissions reduction has emerged among the principal targets in the process of planning and designing road alignments today. Intelligent road design methods that can result in optimized alignment constitute concrete and innovative responses towards better alternatives and more sustainable road infrastructures. As the largest amount of emissions of road infrastructures occur in the operation stage, it becomes very important to consider traffic weight and distribution in alignment design process. This study analyzes the effects of four traffic factors (i.e. operating speed, vehicle category, technology and fuel type) on adjusting the vertical alignment of a given road, using optimization techniques. Further, factors’ effects are assessed qualitatively and quantitatively, and the emission profiles of resulting alignment alternatives are compared.

Keywords: alignment adjustment, emissions reduction, optimization, traffic-oriented

Procedia PDF Downloads 370
2499 Reduction of Differential Column Shortening in Tall Buildings

Authors: Hansoo Kim, Seunghak Shin

Abstract:

The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique.

Keywords: column shortening, long-term behavior, optimization, tall building

Procedia PDF Downloads 249
2498 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 294
2497 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 433
2496 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 85
2495 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 203
2494 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 254
2493 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing

Authors: Ahmed E. Hodaib, Muhammed A. Hashem

Abstract:

High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.

Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing

Procedia PDF Downloads 330
2492 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 487
2491 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322
2490 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus

Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim

Abstract:

In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.

Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology

Procedia PDF Downloads 417
2489 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 146
2488 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach

Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib

Abstract:

The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.

Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach

Procedia PDF Downloads 145
2487 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.

Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization

Procedia PDF Downloads 354
2486 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 402
2485 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.

Keywords: cooler, EER, energy label, optimization

Procedia PDF Downloads 344
2484 Analytic Hierarchy Process and Multi-Criteria Decision-Making Approach for Selecting the Most Effective Soil Erosion Zone in Gomati River Basin

Authors: Rajesh Chakraborty, Dibyendu Das, Rabindra Nath Barman, Uttam Kumar Mandal

Abstract:

In the present study, the objective is to find out the most effective zone causing soil erosion in the Gumati river basin located in the state of Tripura, a north eastern state of India using analytical hierarchy process (AHP) and multi-objective optimization on the basis of ratio analysis (MOORA).The watershed is segmented into 20 zones based on Area. The watershed is considered by pointing the maximum elevation from sea lever from Google earth. The soil erosion is determined using the universal soil loss equation. The different independent variables of soil loss equation bear different weightage for different soil zones. And therefore, to find the weightage factor for all the variables of soil loss equation like rainfall runoff erosivity index, soil erodibility factor etc, analytical hierarchy process (AHP) is used. And thereafter, multi-objective optimization on the basis of ratio analysis (MOORA) approach is used to select the most effective zone causing soil erosion. The MCDM technique concludes that the maximum soil erosion is occurring in the zone 14.

Keywords: soil erosion, analytic hierarchy process (AHP), multi criteria decision making (MCDM), universal soil loss equation (USLE), multi-objective optimization on the basis of ratio analysis (MOORA)

Procedia PDF Downloads 538
2483 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
2482 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 208
2481 Optimization Techniques for Microwave Structures

Authors: Malika Ourabia

Abstract:

A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.

Keywords: segmentation, s parameters, simulation, optimization

Procedia PDF Downloads 528