Search results for: one side class algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7728

Search results for: one side class algorithm

6978 Pattern Recognition Search: An Advancement Over Interpolation Search

Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi

Abstract:

Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.

Keywords: array, complexity, index, sorting, space, time

Procedia PDF Downloads 250
6977 An Experimental Study on the Influence of Brain-Break in the Classroom on the Physical Health and Academic Performance of Fourth Grade Students

Authors: Qian Mao, Xiaozan Wang, Jiarong Zhong, Xiaolin Zou

Abstract:

Introduction: As a result of the decline of students' physical health level and the increase of study pressure, students’ academic performance is not so good. Objective: This study aims to verify whether the Brain-Break intervention in the fourth-grade classroom of primary school can improve students' physical health and academic performance. Methods: According to the principle of no difference in pre-test data, students from two classes of grade four in Fuhai Road Primary School, Fushan district, Yantai city, Shandong province, were selected as experimental subjects, including 50 students in the experimental class (25 males and 25 females) and 50 students in the control class (24 males and 26 females). The content of the experiment was that the students were asked to perform a 4-minute Brain-Berak program designed by the researcher in the second class in the morning and the afternoon, and the intervention lasted for 12 weeks. In addition, the lung capacity, 50-meter run, sitting body forward bend, one-minute jumping rope and one-minute sit-ups stipulated in the national standards for physical fitness of students (revised in 2014) were selected as the indicators of physical health. The scores of Chinese, Mathematics, and English in the unified academic test of the municipal education bureau were selected as the indicators of academic performance. The independent-sample t-test was used to compare and analyze the data of each index between the two classes. The paired-sample t-test was used to compare and analyze the data of each index in the two classes. This paper presents only results with significant differences. Results: in terms of physical health, lung capacity (P=0.002, T= -2.254), one-minute rope skipping (P=0.000, T=3.043), and one-minute sit-ups (P=0.045, T=6.153) were significantly different between the experimental class and the control class. In terms of academic performance, there is a significant difference between the Chinese performance of the experimental class and the control class (P=0.009, T=4.833). Conclusion: Adding Brain-Berak intervention in the classroom can effectively improve the cardiorespiratory endurance (lung capacity), coordination (jumping rope), and abdominal strength (sit-ups) of fourth-grade students. At the same time, it can also effectively improve their Chinese performance. Therefore, it is suggested to promote micro-sports in the classroom of primary schools throughout the country so as to help students improve their physical health and academic performance.

Keywords: academic performance, brain break, fourth grade, physical health

Procedia PDF Downloads 105
6976 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 162
6975 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy

Authors: Wenhao Lan, Ning Li, Qiang Tong

Abstract:

To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.

Keywords: mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB

Procedia PDF Downloads 155
6974 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 268
6973 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection

Authors: Pedro M. A. Vitoriano, Tito. G. Amaral

Abstract:

Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.

Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution

Procedia PDF Downloads 302
6972 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 154
6971 A Novel Idea to Benefit of the Load Side’s Harmonics

Authors: Hussein Al-bayaty

Abstract:

This paper presents a novel idea to show the ability to benefit of the harmonic currents which are produced on the load side of the power grid. The proposed circuit contributes in reduction of the total harmonic distortion (THD) percentage through adding a high pass filter to draw harmonic currents with 150 Hz and multiple frequencies a and convert them to DC current and then reconvert it to AC current with 50 Hz frequency in order to feed different loads. The circuit has been designed, investigated and simulated in the MATLAB, Simulink program; the results will be assessed and compared the two cases: firstly, the system without adding the new circuit. Secondly, with adding the high pas filter circuit to the power system.

Keywords: harmonics elimination, passive filters, Total Harmonic Distortion (THD), filter circuit

Procedia PDF Downloads 418
6970 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)

Procedia PDF Downloads 309
6969 A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range

Authors: Emad E. Abdallah, Alaa E. Abdallah, Bajes Y. Alskarnah

Abstract:

We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks.

Keywords: watermarking, three-dimensional models, perceptual invisibility, interquartile range, 3D attacks

Procedia PDF Downloads 477
6968 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 102
6967 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach

Authors: Mukesh Kumar Shah, Tushar Gupta

Abstract:

An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.

Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits

Procedia PDF Downloads 133
6966 Optimized Control of Roll Stability of Missile using Genetic Algorithm

Authors: Pham Van Hung, Nguyen Trong Hieu, Le Quoc Dinh, Nguyen Kiem Chien, Le Dinh Hieu

Abstract:

The article focuses on the study of automatic flight control on missiles during operation. The quality standards and characteristics of missile operations are very strict, requiring high stability and accurate response to commands within a relatively wide range of work. The study analyzes the linear transfer function model of the Missile Roll channel to facilitate the development of control systems. A two-loop control structure for the Missile Roll channel is proposed, with the inner loop controlling the Missile Roll rate and the outer loop controlling the Missile Roll angle. To determine the optimal control parameters, a genetic algorithm is applied. The study uses MATLAB simulation software to implement the genetic algorithm and evaluate the quality of the closed-loop system. The results show that the system achieves better quality than the original structure and is simple, reliable, and ready for implementation in practical experiments.

Keywords: genetic algorithm, roll chanel, two-loop control structure, missile

Procedia PDF Downloads 94
6965 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data

Authors: Prayas Sharma

Abstract:

This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.

Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution

Procedia PDF Downloads 159
6964 Exploring the Dark Side of IT Security: Delphi Study on Business’ Influencing Factors

Authors: Tizian Matschak, Ilja Nastjuk, Stephan Kühnel, Simon Trang

Abstract:

We argue that besides well-known primary effects of information security controls (ISCs), namely confidentiality, integrity, and availability, ISCs can also have secondary effects. For example, while IT can add business value through impacts on business processes, ISCs can be a barrier and distort the relationship between IT and organizational value through the impact on business processes. By applying the Delphi method with 28 experts, we derived 27 business process influence dimensions of ISCs. Defining and understanding these mechanisms can change the common understanding of the cost-benefit valuation of IT security investments and support managers' effective and efficient decision-making.

Keywords: business process dimensions, dark side of information security, Delphi study, IT security controls

Procedia PDF Downloads 117
6963 Chaos Fuzzy Genetic Algorithm

Authors: Mohammad Jalali Varnamkhasti

Abstract:

The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature.

Keywords: genetic algorithm, fuzzy system, chaos, sexual selection

Procedia PDF Downloads 390
6962 'Infection in the Sentence': The Castration of a Black Woman's Dream of Authorship as Manifested in Buchi Emecheta's Second Class Citizen

Authors: Aseel Hatif Jassam, Hadeel Hatif Jassam

Abstract:

The paper discusses the phallocentric discourse that is challenged by women in general and of women of color in particular in spite of the simultaneity of oppression due to race, class, and gender in the diaspora. Therefore, the paper gives a brief account of women's experience in the light of postcolonial feminist theory. The paper also cast light on the theories of Luce Irigaray and Helen Cixous, two Feminist theorists who support and advise women to have their own discourse to challenge the infectious patriarchal sentence advocated by Sigmund Freud and Harold Bloom's model of literary history. Black women authors like BuchiEmecheta as well as her alter ego Adah, a Nigerian-born girl and the protagonist of her semi-autobiographical novel, Second Class Citizen, suffer from this phallocentric and oppressive sentence and displacement as they migrate from Nigeria, a former British colony where they feel marginalized to North London with the hope of realizing their dreams. Yet, in the British diaspora, they get culturally shocked and continue to suffer from further marginalization due to class and race and are insulted and interiorized ironically by their patriarchal husbands who try to put an end to their dreams of authorship. With the phallocentric belief that women aren't capable of self-representation in the background of their mindsets, the violent Sylvester Onwordi and Francis Obi, the husbands of both Emecheta and Adah, respectively have practiced oppression on them by burning their own authoritative voice, represented by the novels they write while they are struggling with their economically atrocious living experience in the British diaspora.

Keywords: authorship, British diaspora, discourse, phallocentric, patriarchy

Procedia PDF Downloads 182
6961 The Research of the Game Interface Improvement Due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game

Authors: Shih-Chieh Liao, Cheng-Yan Shuai

Abstract:

The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a new type of arcade stick by focus group and assessed by the expert. By filtering the most representative, and build up the control system for the arcade stick, and testing time and bullets consumed in two experiments, try to prove it works in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.

Keywords: arcade stick, joystick, user interface, 2D STG

Procedia PDF Downloads 83
6960 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 553
6959 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan

Authors: Usman Ahmed Khan

Abstract:

Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.

Keywords: LST, LULC, isodata, urbanization

Procedia PDF Downloads 102
6958 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li

Abstract:

This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 289
6957 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm

Procedia PDF Downloads 358
6956 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter

Authors: Asma Ben Rhouma, Mahmoud Hamouda

Abstract:

The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.

Keywords: delta inverter, SPWM, simulation, DSP implementation

Procedia PDF Downloads 165
6955 Study on the Effects of Indigenous Biological Face Treatment

Authors: Saron Adisu Gezahegn

Abstract:

Commercial cosmetic has been affecting human health due to their contents and dosage composition. Chemical base cosmetics exposes users to unnecessary health problems and financial cost. Some of the cosmetics' interaction with the environment has negative impacts on health such as burning, cracking, coloring, and so on. The users are looking for a temporary service without evaluating the side effects of cosmetics that contain chemical compositions that result in irritation, burning, allergies, cracking, and the nature of the face. Every cosmetic contains a heavy metal such as lead, zinc, cadmium, silicon, and other heavy cosmetics materials. The users may expose at the end of the day to untreatable diseases like cancer. The objective of the research is to study the effects of indigenous biological face treatment without any additives like chemicals. In ancient times this thought was highly tremendous in the world but things were changing bit by bit and reached chemical base cosmetics to maintain the beauty of hair, skin, and faces. The side effects of the treatment on the face were minimum and the side effects with the interaction of the environment were almost nil. But this thought is changed and replaces the indigenous substances with chemical substances by adding additives like heavy chemical lead and cadmium in the sense of preservation, pigments, dye, and shining. Various studies indicated that cosmetics have dangerous side effects that expose users to health problems and expensive financial loss. This study focuses on a local indigenous plant called Kulkual. Kulkual is available everywhere in a study area and sustainable products can harvest to use as indigenous face treatment materials.25 men and 25 women were selected as a sample population randomly to conduct the study effectively.The plant is harvested from the guard in the productive season. The plant was exposed to the sun dry for a week. Then the peel was removed from the plant fruit and the peels were taken to a bath filled with water to soak for three days. Then the flesh of the peel was avoided from the fruit and ready to use as a face treatment. The fleshy peel was smeared on each sample for almost a week and continued for a week. The result indicated that the effects of the treatment were a positive response with minimum cost and minimum side effects due to the environment. The beauty shines, smoothness, and color are better than chemical base cosmetics. Finally, the study is recommended that all users prefer a biological method of treatment with minimum cost and minimums side effects on health with the interaction of the environment.

Keywords: cosmetic, indigneous, heavymetals, toxic

Procedia PDF Downloads 112
6954 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: DBSCAN, potential function, speech signal, the UBSS model

Procedia PDF Downloads 140
6953 Reasons for Study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University

Authors: Luedech Girdwichai, Ratchasak Sannok, Jeeranan Wueamprakhon

Abstract:

This research aims to study reasons for study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University. Population is special program students of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University enrolled in academic year B.E. 2012. Data were collected in February 2013 from 98 students. Tool used in this research was questionnaire. Data were analyzed by statistics: percentage, mean, and standard deviation, using a computer program. The results revealed that: 1. Most of the special program students have monthly income between 10,001–20,000 Baht. Majority of the students were private company employees, working in operational level. They were mainly single and the commuting distance to the university is between 10-30 kilometers. 2. Reasons for enrolling of special program students of the Faculty of Industrial Technology, namely, career, self advancement, personal reasons and support from others received high scores. 3. Problems identified such as facilities, services, learning media and the content of the course received average scores.

Keywords: reasons, evening class students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University

Procedia PDF Downloads 323
6952 Identifying the Challenges and Opportunities of Using Lesson Study in English Language Teaching Through the Lenses of In-Service Ecuadorian EFL Teachers

Authors: Cherres Sara, Cajas Diego

Abstract:

This paper explores how EFL teachers understand the process of Lesson Study in Ecuadorian schools and the challenges and opportunities that it brings to the improvement of their teaching practice. Using a narrative research methodology, this study presents the results of the application of the four steps of Lesson Study carried out by seven teachers in four different schools located in the Southern part of Ecuador during four months. Before starting the implementation of the lesson study, 30 teachers were trained on this model. This training was opened to EFL teachers working in public and private schools without any charge. The criteria to select these teachers were first, to be minimum a one-year in-service teacher, second, to have a b2 level of English, and third, to be able to commit to follow the course guidelines. After the course, seven teachers decided to continue with the implementation of the Lesson Study in their respective institutions. During the implementation of the Lesson Study, data was collected through observations, in-depth interviews and teachers’ planning meetings; and analyzed using a thematic analysis. The results of this study are presented using the lenses of seven EFL teachers that explained the challenges and opportunities that the implementation of Lesson Study conveyed. The challenges identified were the limited capacity of reflection and recognition of the activities that required improvement after the class, limited capacity to provide truthful peer feedback, teachers wrong notions about their performance in their classes, difficulties to follow a collaborative lesson plan; and, the disconnection between class activities and the class content. The opportunities identified were teachers’ predisposition to collaborate, teachers’ disposition to attend professional development courses, their commitment to work extra hours in planning meetings, their openness and their desired to be observed in their classes; and, their willingness to share class materials and knowledge. On the other hand, the results show that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations. The authors concluded that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations for example: excessive institutional paperwork and activities that are not connected to the development of students’ competences.

Keywords: ELT, lesson study, teachers’ professional development, teachers’ collaboration

Procedia PDF Downloads 74
6951 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling

Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.

Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot

Procedia PDF Downloads 607
6950 Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar

Authors: Maha Al-Soudani, Gilles Klysz, Jean-Paul Balayssac

Abstract:

The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm.

Keywords: GPR, NDT, Reinforced concrete structures, Rebar location.

Procedia PDF Downloads 509
6949 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System

Authors: Hao Wang, Shuguo Pan

Abstract:

The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.

Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm

Procedia PDF Downloads 103