Search results for: imaging technique
6897 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 156896 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits
Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang
Abstract:
Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)
Procedia PDF Downloads 3296895 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis
Procedia PDF Downloads 3536894 Coating of Polyelectrolyte Multilayer Thin Films on Poly(S/EGDMA) HIPE Loaded with Hydroxyapatite as a Scaffold for Tissue Engineering Application
Authors: Kornkanok Noulta, Pornsri Pakeyangkoon, Stephen T. Dubas, Pomthong Malakul, Manit Nithithanakul
Abstract:
In recent years, interest in the development of material for tissue engineering application has increased considerably. Poly(High Internal Phase Emulsion) (PolyHIPE) foam is a material that is good candidate for used in tissue engineering application due to its 3D structure and highly porous with interconnected pore. The PolyHIPE was prepared from poly (styrene/ethylene glycol dimethacrylate) through high internal phase emulsion polymerization technique and loaded with hydroxyapatite (HA) to improve biocompatibility. To further increase hydrophilicity of the obtained polyHIPE, layer-by-layer polyelectrolyte multilayers (PEM) technique was used. A surface property of polyHIPE was characterized by contact angle measurement. Morphology and pore size was observed by scanning electron microscope (SEM). The cell viability was revealed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique.Keywords: polyelectrolyte multilayer thin film, high internal phase emulsion, polyhipe foam, scaffold, tissue engineering
Procedia PDF Downloads 3516893 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients
Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho
Abstract:
Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper
Procedia PDF Downloads 1466892 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1496891 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter
Authors: Sorore Benabid
Abstract:
The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.Keywords: continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter
Procedia PDF Downloads 3296890 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization
Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed
Abstract:
Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System
Procedia PDF Downloads 4546889 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 936888 Right Cerebellar Stroke with a Right Vertebral Artery Occlusion Following an Embolization of the Right Glomus Tympanicum Tumor
Authors: Naim Izet Kajtazi
Abstract:
Context: Although rare, glomus tumor (i.e., nonchromaffin chemodectomas and paragan¬gliomas) is the most common middle ear tumor, with female predominance. Pre-operative embolization is often required to devascularize the hypervascular tumor for better surgical outcomes. Process: A 35-year-old female presented with episodes of frequent dizziness, ear fullness, and right ear tinnitus for 12 months. Head imaging revealed a right glomus tympanicum tumor. She underwent pre-operative endovascular embolization of the glomus tympanicum tumor with surgical, cyanoacrylate-based glue. Immediately after the procedure, she developed drowsiness and severe pain in the right temporal region. Further investigations revealed a right cerebellar stroke in the posterior inferior cerebellar artery territory. She was treated with intravenous heparin, followed by one year of oral anticoagulation. With rehabilitation, she significantly recovered from her post embolization stroke. However, the tumor was resected at another institution. Ten years later, follow-up imaging indicated a gradual increase in the size of the glomus jugulare tumor, compressing the nearby critical vascular structures. She subsequently received radiation therapy to treat the residual tumor. Outcome: Currently, she has no neurological deficit, but her mild dizziness, right ear tinnitus, and hearing impairment persist. Relevance: This case highlights the complex nature of these tumors, which often bring challenges to the patients as well as treatment teams. The multi-disciplinary team approach is necessary to tailor the management plan for individual tumors. Although embolization is a safe procedure, careful attention and thoughtful anatomic knowledge regarding dangerous anastomosis are essential to avoid devastating complications. Complications occur due to encountered vessel anomalies and new anastomoses formed during the gluing and changes in hemodynamics.Keywords: stroke, embolization, MRI brain, cerebral angiogram
Procedia PDF Downloads 716887 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5156886 Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls
Authors: Soon Ok Jo, Han Kyu Jeung, Si Woo Park
Abstract:
With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed.Keywords: carbon fiber, tow spreading fiber, pre-preg, roll structure
Procedia PDF Downloads 3496885 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning
Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher
Abstract:
Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping
Procedia PDF Downloads 1366884 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 876883 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details
Authors: Wentao He, Jingxi Liu, De Xie
Abstract:
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique
Procedia PDF Downloads 5686882 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography
Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner
Abstract:
Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.Keywords: CBCT, C-arm, reconstruction, trajectory optimization
Procedia PDF Downloads 1326881 Efficient Modeling Technique for Microstrip Discontinuities
Authors: Nassim Ourabia, Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions, and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.Keywords: CAD analysis, contour integral approach, microwave circuits, s-parameters
Procedia PDF Downloads 5166880 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 1206879 X-Ray Detector Technology Optimization in Computed Tomography
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 1946878 A Novel Study Contrasting Traditional Autopsy with Post-Mortem Computed Tomography in Falls Leading to Death
Authors: Balaji Devanathan, Gokul G., Abilash S., Abhishek Yadav, Sudhir K. Gupta
Abstract:
Background: As an alternative to the traditional autopsy, a virtual autopsy is carried out using scanning and imaging technologies, mainly post-mortem computed tomography (PMCT). This facility aims to supplement traditional autopsy results and reduce or eliminate internal dissection in subsequent autopsies. For emotional and religious reasons, the deceased's relatives have historically disapproved such interior dissection. The non-invasive, objective, and preservative PMCT is what friends and family would rather have than a traditional autopsy. Additionally, it aids in the examination of the technologies and the benefits and drawbacks of each, demonstrating the significance of contemporary imaging in the field of forensic medicine. Results: One hundred falls resulting in fatalities was analysed by the writers. Before the autopsy, each case underwent a PMCT examination using a 16-slice Multi-Slice CT spiral scanner. By using specialised software, MPR and VR reconstructions were carried out following the capture of the raw images. The accurate detection of fractures in the skull, face bones, clavicle, scapula, and vertebra was better observed in comparison to a routine autopsy. The interpretation of pneumothorax, Pneumoperitoneum, pneumocephalus, and hemosiuns are much enhanced by PMCT than traditional autopsy. Conclusion. It is useful to visualise the skeletal damage in fall from height cases using a virtual autopsy based on PMCT. So, the ideal tool in traumatising patients is a virtual autopsy based on PMCT scans. When assessing trauma victims, PMCT should be viewed as an additional helpful tool to traditional autopsy. This is because it can identify additional bone fractures in body parts that are challenging to examine during autopsy, such as posterior regions, which helps the pathologist reconstruct the victim's life and determine the cause of death.Keywords: PMCT, fall from height, autopsy, fracture
Procedia PDF Downloads 376877 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms
Authors: Nidhin Dani Abraham, T. K. Sri Shilpa
Abstract:
Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.Keywords: data mining, asset liability management, BASEL III, banking
Procedia PDF Downloads 5526876 Clinical Manifestations, Pathogenesis and Medical Treatment of Stroke Caused by Basic Mitochondrial Abnormalities (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, MELAS)
Authors: Wu Liching
Abstract:
Aim This case aims to discuss the pathogenesis, clinical manifestations and medical treatment of strokes caused by mitochondrial gene mutations. Methods Diagnosis of ischemic stroke caused by mitochondrial gene defect by means of "next-generation sequencing mitochondrial DNA gene variation detection", imaging examination, neurological examination, and medical history; this study took samples from the neurology ward of a medical center in northern Taiwan cases diagnosed with acute cerebral infarction as the research objects. Result This case is a 49-year-old married woman with a rare disease, mitochondrial gene mutation inducing ischemic stroke. She has severe hearing impairment and needs to use hearing aids, and has a history of diabetes. During the patient’s hospitalization, the blood test showed that serum Lactate: 7.72 mmol/L, Lactate (CSF) 5.9 mmol/L. Through the collection of relevant medical history, neurological evaluation showed changes in consciousness and cognition, slow response in language expression, and brain magnetic resonance imaging examination showed subacute bilateral temporal lobe infarction, which was an atypical type of stroke. The lineage DNA gene has m.3243A>G known pathogenic mutation point, and its heteroplasmic level is 24.6%. This pathogenic point is located in MITOMAP and recorded as Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) , Leigh Syndrome and other disease-related pathogenic loci, this mutation is located in ClinVar and recorded as Pathogenic (dbSNP: rs199474657), so it is diagnosed as a case of stroke caused by a rare disease mitochondrial gene mutation. After medical treatment, there was no more seizure during hospitalization. After interventional rehabilitation, the patient's limb weakness, poor language function, and cognitive impairment have all improved significantly. Conclusion Mitochondrial disorders can also be associated with abnormalities in psychological, neurological, cerebral cortical function, and autonomic functions, as well as problems with internal medical diseases. Therefore, the differential diagnoses cover a wide range and are not easy to be diagnosed. After neurological evaluation, medical history collection, imaging and rare disease serological examination, atypical ischemic stroke caused by rare mitochondrial gene mutation was diagnosed. We hope that through this case, the diagnosis of rare disease mitochondrial gene variation leading to cerebral infarction will be more familiar to clinical medical staff, and this case report may help to improve the clinical diagnosis and treatment for patients with similar clinical symptoms in the future.Keywords: acute stroke, MELAS, lactic acidosis, mitochondrial disorders
Procedia PDF Downloads 706875 Electrospun Membrane doped with Gold Nanorods for Surface-Enhanced Raman Sepctroscopy
Authors: Ziwei Wang, Andrea Lucotti, Luigi Brambilla, Matteo Tommasini, Chiara Bertarelli
Abstract:
Surface-enhanced Raman Spectroscopy (SERS) is a highly sensitive detection that provides abundant information on low concentration analytes from various researching areas. Based on localized surface plasmon resonance, metal nanostructures including gold, silver and copper have been investigated as SERS substrate during recent decades. There has been increasing more attention of exploring good performance, homogenous, repeatable SERS substrates. Here, we show that electrospinning, which is an inexpensive technique to fabricate large-scale, self-standing and repeatable membranes, can be effectively used for producing SERS substrates. Nanoparticles and nanorods are added to the feed electrospinning solution to collect functionalized polymer fibrous mats. We report stable electrospun membranes as SERS substrate using gold nanorods (AuNRs) and poly(vinyl alcohol). Particularly, a post-processing crosslinking step using glutaraldehyde under acetone environment was carried out to the electrospun membrane. It allows for using the membrane in any liquid environment, including water, which is of interest both for sensing of contaminant in wastewater, as well as for biosensing. This crosslinked AuNRs/PVA membrane has demonstrated excellent performance as SERS substrate for low concentration 10-6 M Rhodamine 6G (Rh6G) aqueous solution. This post-processing for fabricating SERS substrate is the first time reported and proved through Raman imaging of excellent stability and outstanding performance. Finally, SERS tests have been applied to several analytes, and the application of AuNRs/PVA membrane is broadened by removing the detected analyte by rinsing. Therefore, this crosslinked AuNRs/PVA membrane is re-usable.Keywords: SERS spectroscopy, electrospinning, crosslinking, composite materials
Procedia PDF Downloads 1406874 Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease
Authors: J. DeBoard, R. Dietrich, J. Hughes, K. Yurko, G. Harms
Abstract:
Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible.Keywords: Alzheimer's disease, blood biomarker, neurodegeneration, neuromuscular control, olfaction, traumatic brain injury
Procedia PDF Downloads 1416873 Hypersensitivity Reactions Following Intravenous Administration of Contrast Medium
Authors: Joanna Cydejko, Paulina Mika
Abstract:
Hypersensitivity reactions are side effects of medications that resemble an allergic reaction. Anaphylaxis is a generalized, severe allergic reaction of the body caused by exposure to a specific agent at a dose tolerated by a healthy body. The most common causes of anaphylaxis are food (about 70%), Hymenoptera venoms (22%), and medications (7%), despite detailed diagnostics in 1% of people, the cause of the anaphylactic reaction was not indicated. Contrast media are anaphylactic agents of unknown mechanism. Hypersensitivity reactions can occur with both immunological and non-immunological mechanisms. Symptoms of anaphylaxis occur within a few seconds to several minutes after exposure to the allergen. Contrast agents are chemical compounds that make it possible to visualize or improve the visibility of anatomical structures. In the diagnosis of computed tomography, the preparations currently used are derivatives of the triiodide benzene ring. Pharmacokinetic and pharmacodynamic properties, i.e., their osmolality, viscosity, low chemotoxicity and high hydrophilicity, have an impact on better tolerance of the substance by the patient's body. In MRI diagnostics, macrocyclic gadolinium contrast agents are administered during examinations. The aim of this study is to present the results of the number and severity of anaphylactic reactions that occurred in patients in all age groups undergoing diagnostic imaging with intravenous administration of contrast agents. In non-ionic iodine CT and in macrocyclic gadolinium MRI. A retrospective assessment of the number of adverse reactions after contrast administration was carried out on the basis of data from the Department of Radiology of the University Clinical Center in Gdańsk, and it was assessed whether their different physicochemical properties had an impact on the incidence of acute complications. Adverse reactions are divided according to the severity of the patient's condition and the diagnostic method used in a given patient. Complications following the administration of a contrast medium in the form of acute anaphylaxis accounted for less than 0.5% of all diagnostic procedures performed with the use of a contrast agent. In the analysis period from January to December 2022, 34,053 CT scans and 15,279 MRI examinations with the use of contrast medium were performed. The total number of acute complications was 21, of which 17 were complications of iodine-based contrast agents and 5 of gadolinium preparations. The introduction of state-of-the-art contrast formulations was an important step toward improving the safety and tolerability of contrast agents used in imaging. Currently, contrast agents administered to patients are considered to be one of the best-tolerated preparations used in medicine. However, like any drug, they can be responsible for the occurrence of adverse reactions resulting from their toxic effects. The increase in the number of imaging tests performed with the use of contrast agents has a direct impact on the number of adverse events associated with their administration. However, despite the low risk of anaphylaxis, this risk should not be marginalized. The growing threat associated with the mass performance of radiological procedures with the use of contrast agents forces the knowledge of the rules of conduct in the event of symptoms of hypersensitivity to these preparations.Keywords: anaphylactic, contrast medium, diagnostic, medical imagine
Procedia PDF Downloads 626872 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 5746871 Application of XRF and Other Principal Component Analysis for Counterfeited Gold Coin Characterization in Forensic Science
Authors: Somayeh Khanjani, Hamideh Abolghasemi, Hadi Shirzad, Samaneh Nabavi
Abstract:
At world market can be currently encountered a wide range of gemological objects that are incorrectly declared, treated, or it concerns completely different materials that try to copy precious objects more or less successfully. Counterfeiting of precious commodities is a problem faced by governments in most countries. Police have seized many counterfeit coins that looked like the real coins and because the feeling to the touch and the weight were very similar to those of real coins. Most people were fooled and believed that the counterfeit coins were real ones. These counterfeit coins may have been made by big criminal organizations. To elucidate the manufacturing process, not only the quantitative analysis of the coins but also the comparison of their morphological characteristics was necessary. Several modern techniques have been applied to prevent counterfeiting of coins. The objective of this study was to demonstrate the potential of X-ray Fluorescence (XRF) technique and the other analytical techniques for example SEM/EDX/WDX, FT-IR/ATR and Raman Spectroscopy. Using four elements (Cu, Ag, Au and Zn) and obtaining XRF for several samples, they could be discriminated. XRF technique and SEM/EDX/WDX are used for study of chemical composition. XRF analyzers provide a fast, accurate, nondestructive method to test the purity and chemistry of all precious metals. XRF is a very promising technique for rapid and non destructive counterfeit coins identification in forensic science.Keywords: counterfeit coins, X-ray fluorescence, forensic, FT-IR
Procedia PDF Downloads 4946870 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 3386869 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3806868 A Case of Bilateral Vulval Abscess with Pelvic Fistula in an Immunocompromised Patient with Colostomy: A Diagnostic Challenge
Authors: Paul Feyi Waboso
Abstract:
This case report presents a 57-year-old female patient with a history of colon cancer, colostomy, and immunocompromise, who presented with an unusual bilateral vulval abscess, more prominent on the left side. Due to the atypical presentation, an MRI was performed, revealing a pelvic collection and a fistulous connection between the pelvis and vulva. This finding prompted an urgent surgical intervention. This case highlights the diagnostic and therapeutic challenges of managing complex abscesses and fistulas in immunocompromised patients. Introduction: Vulval abscesses in immunocompromised individuals can present with atypical features and may be associated with complex pathologies. Patients with a history of cancer, colostomy, and immunocompromise are particularly prone to infections and may present with unusual manifestations. This report discusses a case of a large bilateral vulval abscess with an underlying pelvic fistula, emphasizing the importance of advanced imaging in cases with atypical presentations. Case Presentation: A 57-year-old female with a known history of colon cancer, treated with colostomy, presented with severe pain and swelling in the vulval area. Physical examination revealed bilateral vulval swelling, with the abscess on the left side appearing larger and more pronounced than on the right. Given her immunocompromised status and the unusual nature of the presentation, we requested an MRI of the pelvis, suspecting an underlying pathology beyond a typical abscess. Investigations: MRI imaging revealed a significant pelvic collection and identified a fistulous tract between the pelvis and the vulva. This confirmed that the vulval abscess was connected to a deeper pelvic infection, necessitating urgent intervention. Management: After consultation with the multidisciplinary team (MDT), it was agreed that the patient required surgical intervention, having had 48 hours of antibiotics. The patient underwent evacuation of the left-sided vulval abscess under spinal anesthesia. During surgery, the pelvic collection was drained of 200 ml of pus. Outcome and Follow-Up: Postoperative recovery was closely monitored due to the patient’s immunocompromised state. Follow-up imaging and clinical evaluation showed improvement in symptoms, with gradual resolution of infection. The patient was scheduled for regular follow-up visits to monitor for recurrence or further complications. Discussion: Bilateral vulval abscesses are uncommon and, in an immunocompromised patient, warrant thorough investigation to rule out deeper infectious or fistulous connections. This case underscores the utility of MRI in identifying complex fistulous tracts and highlights the importance of a multidisciplinary approach in managing such high-risk patients. Conclusion: This case illustrates a rare presentation of bilateral vulval abscess with an associated pelvic fistula.Keywords: vulval abscess, MDT team, colon cancer with pelvic fistula, vulval skin condition
Procedia PDF Downloads 18