Search results for: framed structures
3596 Design and Optimization of Spoke Rotor Type Brushless Direct Current Motor for Electric Vehicles Using Different Flux Barriers
Authors: Ismail Kurt, Necibe Fusun Oyman Serteller
Abstract:
Today, with the reduction in semiconductor system costs, Brushless Direct Current (BLDC) motors have become widely preferred. Based on rotor architecture, BLDC structures are divided into internal permanent magnet (IPM) and surface permanent magnet (SPM). However, permanent magnet (PM) motors in electric vehicles (EVs) are still predominantly based on interior permanent magnet (IPM) motors, as the rotors do not require sleeves, the PMs are better protected by the rotor cores, and the air-gap lengths can be much smaller. This study discusses the IPM rotor structure in detail, highlighting its higher torque levels, reluctance torque, wide speed range operation, and production advantages. IPM rotor structures are particularly preferred in EVs due to their high-speed capabilities, torque density and field weakening (FW) features. In FW applications, the motor becomes more suitable for operation at torques lower than the rated torque but at speeds above the rated speed. Although V-type and triangular IPM rotor structures are generally preferred in EV applications, the spoke-type rotor structure offers distinct advantages, making it a competitive option for these systems. The flux barriers in the rotor significantly affect motor performance, providing notable benefits in both motor efficiency and cost. This study utilizes ANSYS/Maxwell simulation software to analyze the spoke-type IPM motor and examine its key design parameters. Through analytical and 2D analysis, preliminary motor design and parameter optimization have been carried out. During the parameter optimization phase, torque ripple a common issue, especially for IPM motors has been investigated, along with the associated changes in motor parameters.Keywords: electric vehicle, field weakening, flux barrier, spoke rotor.
Procedia PDF Downloads 83595 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling
Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad
Abstract:
One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis
Procedia PDF Downloads 4143594 Rethinking Peace Journalism in Pakistan: A Critical Analysis of News Discourse on the Afghan Refugee Repatriation Conflict
Authors: Ayesha Hasan
Abstract:
This study offers unique perspectives and analyses of peace and conflict journalism through interpretative repertoire, media frames, and critical discourse analyses. Two major English publications in Pakistan, representing both long and short-form journalism, are investigated to uncover how the Afghan refugee repatriation from Pakistan in 2016-17 has been framed in Pakistani English media. Peace journalism focuses on concepts such as peace initiatives and peace building, finding common ground, and preventing further conflict. This study applies Jake Lynch’s Coding Criteria to guide the critical discourse analysis and Lee and Maslog’s Peace Journalism Quotient to examine the extent of peace journalism in each text. This study finds that peace journalism is missing in Pakistani English press, but represented, to an extent, in long-form print and online coverage. Two new alternative frames are also proposed. This study gives an in-depth understanding of if and how journalists in Pakistan are covering conflicts and framing stories that can be identified as peace journalism. This study represents significant contributions to the remarkably limited scholarship on peace and conflict journalism in Pakistan and extends Shabbir Hussain’s work on critical pragmatic perspectives on peace journalism in Pakistan.Keywords: Afghan refugee repatriation, Critical discourse analysis, Media framing , Peace and conflict journalism
Procedia PDF Downloads 2013593 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures
Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar
Abstract:
Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses
Procedia PDF Downloads 5293592 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV
Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs
Abstract:
Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease
Procedia PDF Downloads 4883591 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.Keywords: reinforced concrete, FRP laminate, flexural capacity, ductility
Procedia PDF Downloads 2913590 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 2073589 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses
Authors: Seung-Won Lee, JongSoo Lee, Won-Jik Yang, Hyung-Joon Kim
Abstract:
A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.Keywords: seismic fragility curve, incremental dynamic analysis, capacity spectrum method, reinforced concrete moment frame
Procedia PDF Downloads 4233588 An Improved Tie Force Method for Progressive Collapse Resistance Design of Precast Concrete Cross Wall Structures
Authors: M. Tohidi, J. Yang, C. Baniotopoulos
Abstract:
Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.Keywords: cross wall, progressive collapse, ties force method, catenary, analytical
Procedia PDF Downloads 4693587 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 1753586 Analytical Approach to Study the Uncertainties Related to the Behavior of Structures Submitted to Differential Settlement
Authors: Elio El Kahi, Michel Khouri, Olivier Deck, Pierre Rahme, Rasool Mehdizadeh
Abstract:
Recent developments in civil engineering create multiple interaction problems between the soil and the structure. One of the major problems is the impact of ground movements on buildings. Consequently, managing risks associated with these movements, requires a determination of the different influencing factors and a specific knowledge of their variability/uncertainty. The main purpose of this research is to study the behavior of structures submitted to differential settlement, in order to assess their vulnerability, taking into consideration the different sources of uncertainties. Analytical approach is applied to investigate on one hand the influence of these uncertainties that are related to the soil, and on the other hand the structure stiffness variation with the presence of openings and the movement transmitted between them as related to the origin and shape of the free-field movement. Results reveal the effect of taking these uncertainties into consideration, and specify the dominant and most significant parameters that control the ground movement associated with the Soil-Structure Interaction (SSI) phenomenon.Keywords: analytical approach, building, damage, differential settlement, soil-structure interaction, uncertainties
Procedia PDF Downloads 2353585 Sedimentary Response to Coastal Defense Works in São Vicente Bay, São Paulo
Authors: L. C. Ansanelli, P. Alfredini
Abstract:
The article presents the evaluation of the effectiveness of two groins located at Gonzaguinha and Milionários Beaches, situated on the southeast coast of Brazil. The effectiveness of these coastal defense structures is evaluated in terms of sedimentary dynamics, which is one of the most important environmental processes to be assessed in coastal engineering studies. The applied method is based on the implementation of the Delft3D numerical model system tools. Delft3D-WAVE module was used for waves modelling, Delft3D-FLOW for hydrodynamic modelling and Delft3D-SED for sediment transport modelling. The calibration of the models was carried out in a way that the simulations adequately represent the region studied, evaluating improvements in the model elements with the use of statistical comparisons of similarity between the results and waves, currents and tides data recorded in the study area. Analysis of the maximum wave heights was carried to select the months with higher accumulated energy to implement these conditions in the engineering scenarios. The engineering studies were performed for two scenarios: 1) numerical simulation of the area considering only the two existing groins; 2) conception of breakwaters coupled at the ends of the existing groins, resulting in two “T” shaped structures. The sediment model showed that, for the simulated period, the area is affected by erosive processes and that the existing groins have little effectiveness in defending the coast in question. The implemented T structures showed some effectiveness in protecting the beaches against erosion and provided the recovery of the portion directly covered by it on the Milionários Beach. In order to complement this study, it is suggested the conception of further engineering scenarios that might recover other areas of the studied region.Keywords: coastal engineering, coastal erosion, Sao Vicente bay, Delft3D, coastal engineering works
Procedia PDF Downloads 1273584 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement
Authors: Khaing Su Su Than, Hibino Yo
Abstract:
Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures
Procedia PDF Downloads 1573583 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods
Authors: Thabo M. Bafitlhile, Adewole Oladele
Abstract:
Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.Keywords: drainage, estimate, evaluation, floods, flood forecasting
Procedia PDF Downloads 3713582 Effect of Different Plan Shapes on the Load Carrying Capacity of a Steel Frame under Extreme Loading
Authors: Omid Khandel, Azadeh Parvin
Abstract:
An increase in accidental explosions in recent years has increased the interest on investigating the response and behavior of structures in more details. The present work focused on finite element analysis of multistory steel frame structures with different plan shapes subjected to blast loadings. In order to study the effect of the geometry of the building, three different shapes for the plan of the building were modeled and studied; Rectangular, Square and L shape plans. The nonlinear dynamic analysis was considered in this study. The relocation technique was also used to improve the behavior of structure. The accuracy of the multistory frame model was confirmed with those of the existing study in the literature and they were in good agreement. The effect of span length of the buildings was also considered. Finite element analysis of various scenarios for relocating the plastic hinges and improving the response of the structure was performed. The base shear versus displacement curves were compared to reveal the best possible scenarios to provide recommendations to designers and practitioners.Keywords: nonlinear dynamic analysis, plastic hinge relocation, Retrofit, SAP2000
Procedia PDF Downloads 2823581 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes
Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush
Abstract:
Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing
Procedia PDF Downloads 2233580 The Eathquake Discourse as a Strategy of an Urban Renewal: A Case Study into the Karapınar Valley Regeneration Project in Eskişehir, Turkey
Authors: Cansu Civelek
Abstract:
The flexible and uneven character of neoliberalism has provided adaptation of urban strategies into the constantly changing circumstances in order to renew and reproduce the neoliberal accumulation model. Instrumentalization of catastrophic events to this end has been one of those global urban strategies. Regarding Turkey, exploitation of natural disasters has been the latest tactic of the Justice and Development Party (JDP) government to achieve radical economic goals. ‘Unhealthy’ and ‘risky’ structures of squatter settlements have often been articulated while the regenerations, expropriations, and exclusions have been sugarcoated through the discourses of ‘reintegrating the shanty zones into the cities’, ‘supplying healthy housing’, and ‘win-win’ character of the projects. Being the first regeneration project of Eskişehir, the Karapınar Regeneration Project has been initiated in 2011 by the partnership of the Odunpazarı Municipality of the JDP and the Mass Housing Organization. Discourses around the forthcoming disasters, ‘risky structures’ of the squatters, and the importance of the ‘security of life and property’ have been utilized, even though the zone is situated on a geotechnically stable area. Yet, many of the locals are worried about the payments while some have already decided to move elsewhere at the outskirts of the city.Keywords: neoliberal urbanism, urban regeneration, illegal settlements, discourses
Procedia PDF Downloads 4433579 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 1943578 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile
Authors: Monika Kamocka, Radoslaw Mania
Abstract:
The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method
Procedia PDF Downloads 1943577 Functional Nanomaterials for Environmental Applications
Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine
Abstract:
The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.Keywords: hybrid materials, porous silicon, peptide, metal detection
Procedia PDF Downloads 4993576 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff
Abstract:
Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient
Procedia PDF Downloads 3913575 Prototype of Low-Cost Safety-Suit for Manual Scavengers in India
Authors: Noopur Anand, Amit Gupta
Abstract:
Sewage divers are the workers involved in cleaning and maintaining of the sewerage lines by entering through manholes. The working conditions of sewage divers in India are more challenging than in other countries. Though India has legal acts framed to ensure protection of the divers called 'The Prohibition of Employment of Manual Scavengers and their Rehabilitation Act, 2013' by Ministry of Law and Justice but these are usually not implemented. Further, the divers are not even provided with safety gear like mask, eyewear, helmet, safety suit, safety belt, gloves, and shoes because of lack of initiative among the agencies/individuals employing them and low awareness of importance of the protective gear amongst workers themselves. Several reports and studies show that because of the non-availability of safety gear, many sewage workers get infected and many of them retire even before attaining superannuation and about 70% of the manual scavengers die while on job. Though there are neoprene safety suits, costing only a few thousand, available in the market which can suffice but is beyond the buying capacity of the sewage diver and agencies/individuals employing them are reluctant to procure it as they find it expensive. In absence of safety suits, the divers get exposed to the parasites, viruses, and disease-causing germs present in the sewage. The research was undertaken with the objective of developing an affordable safety-suit which would save diver from coming into direct contact with the sewage thus preventing infections and diseases. The low cost of the suit may also motivate their employers to procure them for sewage divers.Keywords: manhole cleaner, manual scavenger, prototype, low-cost safety-suit
Procedia PDF Downloads 1683574 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran
Authors: Iman Shabanzadeh
Abstract:
Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience
Procedia PDF Downloads 633573 Influence of Bio-Based Admixture on Compressive Strength of Concrete for Columns
Authors: K. Raza, S. Gul, M. Ali
Abstract:
Concrete is a fundamental building material, extensively utilized by the construction industry. Problems related to the strength of concrete is an immense issue for the sustainability of concrete structures. Concrete mostly loses its strength due to the cracks produced in it by shrinkage or hydration process. This study aims to enhance the strength and service life of the concrete structures by incorporating bio-based admixture in the concrete. By the injection of bio-based admixture (BBA) in concrete, it will self-heal the cracks by producing calcium carbonate. Minimization of cracks will compact the microstructure of the concrete, due to which strength will increase. For this study, Bacillus subtilis will be used as a bio-based admixture (BBA) in concrete. Calcium lactate up to 1.5% will be used as the food source for the Bacillus subtilis in concrete. Two formulations containing 0 and 5% of Bacillus subtilis by weight of cement, will be used for the casting of concrete specimens. Direct mixing method will be adopted for the usage of bio-based admixture in concrete. Compressive strength test will be carried out after 28 days of curing. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) will be performed for the examination of micro-structure of concrete. Results will be drawn by comparing the test results of 0 and 5% the formulations. It will be recommended to use to bio-based admixture (BBA) in concrete for columns because of the satisfactory increase in the compressive strength of concrete.Keywords: bio-based admixture, Bacillus subtilis, calcium lactate, compressive strength
Procedia PDF Downloads 2263572 Ductility of Slab-Interior Column Connections Transferring Shear and Moment
Authors: Omar M. Ben-Sasi
Abstract:
Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures.Keywords: ductility, flat slab, failure, shear force, moment, unbalanced moment, punching failure, connection, interior-column connection
Procedia PDF Downloads 4013571 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria
Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo
Abstract:
In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices
Procedia PDF Downloads 813570 Intelligent Staff Scheduling: Optimizing the Solver with Tabu Search
Authors: Yu-Ping Chiu, Dung-Ying Lin
Abstract:
Traditional staff scheduling methods, relying on employee experience, often lead to inefficiencies and resource waste. The challenges of transferring scheduling expertise and adapting to changing labor regulations further complicate this process. Manual approaches become increasingly impractical as companies accumulate complex scheduling rules over time. This study proposes an algorithmic optimization approach to address these issues, aiming to expedite scheduling while ensuring strict compliance with labor regulations and company policies. The method focuses on generating optimal schedules that minimize weighted company objectives within a compressed timeframe. Recognizing the limitations of conventional commercial software in modeling and solving complex real-world scheduling problems efficiently, this research employs Tabu Search with both long-term and short-term memory structures. The study will present numerical results and managerial insights to demonstrate the effectiveness of this approach in achieving intelligent and efficient staff scheduling.Keywords: intelligent memory structures, mixed integer programming, meta-heuristics, staff scheduling problem, tabu search
Procedia PDF Downloads 273569 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details
Authors: Wentao He, Jingxi Liu, De Xie
Abstract:
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique
Procedia PDF Downloads 5683568 Formation of In-Situ Composite during Reactive Wetting and Imbibition Ta by Cu(B) Melt
Authors: Sergei Zhevnenko
Abstract:
Сontinuous layer of tantalum boride is formed on the surface as a result of reactive wetting of oxidized tantalum by copper melt with boron at a temperatures above 1150 °C. An increase in the wetting temperature above 1400 °C leads to a change in the formation mechanism of tantalum borides, they are formed in the nanosized flakes. In the presented work, we studied the process of copper-based in-situ composite formation, strengthened by the particles of tantalum borides. We investigated the structure of the formed particles, the conditions, and the kinetics of their formation. Dissolving boride particles do not have time to mix uniformly in the melt upon sufficiently rapid cooling and form a macrostructure, partly repeating the shape of the metallic tantalum. This allows to set different gradient structures in the copper alloy. Such macrostructures have been obtained. Boride particles and microstructures were studied by scanning and transmission electron microscopy, and regions with particles were investigated by nanoindentation. In this work, we also measured the kinetics of impregnation of porous tantalum with copper-boron melt and studied the structures of the composite, in which the melt filling the interpore space is saturated with boride particles.Keywords: copper, tantalum borides, in-situ composites, wetting, imbibition
Procedia PDF Downloads 1043567 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method
Authors: Omer Oral, Y. Emre Yilmaz
Abstract:
Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization
Procedia PDF Downloads 137