Search results for: compound model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17666

Search results for: compound model

16916 Evaluating the Hepato-Protective Activities of Combination of Aqueous Extract of Roots of Tinospora cordifolia and Rhizomes of Curcuma longa against Paracetamol Induced Hepatic Damage in Rats

Authors: Amberkar Mohanbabu Vittalrao, Avin, Meena Kumari Kamalkishore, Padmanabha Udupa, Vinaykumar Bavimane, Honnegouda

Abstract:

Objective: To evaluate the hepato-protective activity of Tinospora cordiofolia (Tc) against paracetamol induced hepatic damage in rats. Methods: The plant stem (test drug) was procured locally, shade dried, powdered and extracted with water. Silymarin was used as standard hepatoprotective drugs and 2% gum acacia as a control (vehicle) against paracetamol (PCT) induced hepatotoxicity. Results and Discussion: The hepato-protective activity of aqueous stem extract was assessed by paracetamol induced hepatotoxicity preventive model in rats. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP and lipid peroxides were tested in both paracetamol treated and untreated groups. Paracetamol (3g/kg) had enhanced the AST, ALT, ALP and the lipid peroxides in the serum. Treatment of silymarin and aqueous stem extract of Tc (200 and 400mg/kg) extract showed significant hepatoprotective activity by altering biochemical marker levels to the near normal. Preliminary phytochemical tests were done. Aqueous Tc extract showed presence of phenolic compound and flavonoids. Our findings suggested that Tc extract possessed hepatoprotective activity in a dose dependent manner. Conclusions: Tc was found to possess significant hepatoprotective property when treated with PCT. This was evident by decreasing the liver enzymes significantly when treated with PCT as compared to PCT only treated group (P < 0.05). Hence Tinospora cardiofolia could be a good, promising, preventive agent against PCT induced hepatotoxicity.

Keywords: Tinospora cardiofolia, hepatoprotection, paracetamol, silymarin

Procedia PDF Downloads 202
16915 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision

Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.

Abstract:

To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.

Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model

Procedia PDF Downloads 189
16914 A Mathematical Model for Hepatitis B Virus Infection and the Impact of Vaccination on Its Dynamics

Authors: T. G. Kassem, A. K. Adunchezor, J. P. Chollom

Abstract:

This paper describes a mathematical model developed to predict the dynamics of Hepatitis B virus (HBV) infection and to evaluate the potential impact of vaccination and treatment on its dynamics. We used a compartmental model expressed by a set of differential equations based on the characteristic of HBV transmission. With these, we find the threshold quantity R0, then find the local asymptotic stability of disease free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease free and endemic equilibrium.

Keywords: hepatitis B virus, epidemiology, vaccination, mathematical model

Procedia PDF Downloads 324
16913 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments

Authors: Rachel Baruch

Abstract:

This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.

Keywords: ICT tools, e-learning, pre-service teachers, new model

Procedia PDF Downloads 465
16912 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects

Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali

Abstract:

The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.

Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia

Procedia PDF Downloads 23
16911 Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: Polyoxometalate, Keggin, Organic-inorganic salt, TMV

Procedia PDF Downloads 288
16910 Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 421
16909 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 242
16908 Contribution to the Analytical Study of the Stability of a DC-DC Converter (Boost) Used for MPPT Control

Authors: Mohamed Amarouayache, Badia Amrouche, Gharbi Akila, Boukadoume Mohamed

Abstract:

This work is devoted to the modeling of DC-DC converter (boost) used for MPPT applications to set conditions of stability. For this, we establish a linear mathematical model of the DC-DC converter with an average small signal model. This model has allowed us to apply conventional linear methods of automation. A mathematical relationship between the duty cycle and the voltage of the panel has been set up. With this relationship we specify the conditions of the stability in closed-loop depending on the system parameters (the elements of storage capacity and inductance, PWM control).

Keywords: MPPT, PWM, stability, criterion of Routh, average small signal model

Procedia PDF Downloads 443
16907 In Vitro Antimycoplasmal Activity of Peganum harmala on Mycoplasma hominis Tunisian Strains

Authors: Nadine khadraoui, Rym Essid, Olfa Tabbene, Imen Chniba, Safa Boujemaa, Selim Jallouli, Nadia Fares, Behija Mlik, Boutheina Ben Abdelmoumen Mardassi

Abstract:

Background and aim: Mycoplasma hominis is an opportunistic pathogen that can cause various gynecological infections such cervicitis, infertility, and, less frequently, extra-genital infections. Previous studies on the antimicrobial susceptibility of Mycoplasma hominis Tunisian strains have highlighted a significant resistance, even multi-resistance, to the most used antibiotic in the therapy of consequential infections. To address this concern, the present study aimed for the alternative of phytotherapy. Peganum harmala seed extract was tested as an antibacterial agent against multidrug-resistant M.hominis clinical strains. Material and Methods: Peganum harmala plant was collected from Ain Sebaa, Tabarka, North West region of Tunisia in April 2018, air-dried, grounded and extracted by different solvents.The crude methanolic extract was further partitioned with n-HEX, DCM, EtOAC and n-BuOl. Antibacterial activity was evaluated against M. hominis ATCC 23114 and 20 M. hominis clinical strains.The antimycoplasmal activity was tested by the microdilution method, and MIC values were determined. Phytochemical analysis and hemolytic activity on human erythrocytes were also performed. The active fraction was then subjected to purification, and the chemical identification of the active compound was investigated. Results: Among the tested fractions, the n-BuOH extract was the most active fraction since it exhibited an inhibitory effect against M. hominis ATCC 23114 and 80% of the tested clinical strains with MIC between 125 and 1000 µg/ml. The phytochemical analysis of the n-BuOH revealed its metabolic abundance in polyphenols, flavonoids and condensed tannin with levels of 257.37 mg AGE/g, 172.27 mg EC/g and 58.27 mg EC/g, respectively. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against all M. hominis isolates with CMB values ranging between 125 and 4000 µg/ml. Further, the active fraction exhibited weak cytotoxicity effect at active concentrations when tested on human erythrocytes. The active compound was identified by gas chromatography–mass spectrometry as an indole alkaloid harmaline. Conclusion: In summary, Peganum harmala extract demonstrated an interesting anti-mycoplasmal activity against M. hominis Tunisian strains. Therefore, it could be considered as a potential candidate for the treatment of consequential infections. However, further studies are necessary to evaluate its mechanism of action in mycoplasmas.

Keywords: mycoplasma hominis, peganum harmala, antibioresistance, phytotherapy, phytochemical analysis

Procedia PDF Downloads 117
16906 Phytochimical Screening and Antimicrobial Activity of Ethanolic Extract of Solenostemma Argel (Asclepiadaceae)

Authors: Fatma Acheuk, Akila Hamichi, Siham Semmar

Abstract:

The crude ethanolic extract from Solenostemma argel was obtained by maceration of leaves and stems of the plant. Phytochimical study revealed the richness of the species on flavonoids, alkaloids, tannins and glycosides. Antimicrobial activity of the growth of clinical isolates of Eschirichia coli, Pseudomonas aeriginosa, Staphylococus aureus and Bacillus Subtilis was carried out using agar disc diffusion. The results of the study revealed that the test compound has antimicrobial activity against gram-positive bacteria which are resistant to commonly antimicrobial agents used. However, no effect was observed on other species tested.

Keywords: Solenostemma argel, crude extract, phytochemical screening, antimicrobial activity

Procedia PDF Downloads 381
16905 Combustion Analysis of Suspended Sodium Droplet

Authors: T. Watanabe

Abstract:

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Keywords: analysis, combustion, droplet, sodium

Procedia PDF Downloads 211
16904 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model

Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.

Abstract:

This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.

Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM

Procedia PDF Downloads 392
16903 A Model-Driven Approach of User Interface for MVP Rich Internet Application

Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract:

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

Keywords: metamodel, model-driven engineering, MVP, rich internet application, transformation, user interface

Procedia PDF Downloads 353
16902 Kauffman Model on a Network of Containers

Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin

Abstract:

In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model.

Keywords: agglomeration, autocatalytic set, differential equation, Kauffman model

Procedia PDF Downloads 58
16901 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 410
16900 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 312
16899 Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 290
16898 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 74
16897 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities

Authors: Shahroz Khan, Osman Taha Şen

Abstract:

In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.

Keywords: contact force, nonlinearities, brake squeal, vehicle brake

Procedia PDF Downloads 246
16896 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 442
16895 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 291
16894 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 198
16893 Optimization of Scheduling through Altering Layout Using Pro-Model

Authors: Zouhair Issa Ahmed, Ahmed Abdulrasool Ahmed, Falah Hassan Abdulsada

Abstract:

This paper presents a layout of a factory using Pro-Model simulation by choosing the best layout that gives the highest productivity and least work in process. The general problem is to find the best sequence in which jobs pass between the machines which are compatible with the technological constraints and optimal with respect to some performance criteria. The best simulation with Pro-Model program increased productivity and reduced work in process by balancing lines of production compared with the current layout of factory when productivity increased from 45 products to 180 products through 720 hours.

Keywords: scheduling, Pro-Model, simulation, balancing lines of production, layout planning, WIP

Procedia PDF Downloads 635
16892 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
16891 Cellular Mechanisms Involved in the Radiosensitization of Breast- and Lung Cancer Cells by Agents Targeting Microtubule Dynamics

Authors: Elsie M. Nolte, Annie M. Joubert, Roy Lakier, Maryke Etsebeth, Jolene M. Helena, Marcel Verwey, Laurence Lafanechere, Anne E. Theron

Abstract:

Treatment regimens for breast- and lung cancers may include both radiation- and chemotherapy. Ideally, a pharmaceutical agent which selectively sensitizes cancer cells to gamma (γ)-radiation would allow administration of lower doses of each modality, yielding synergistic anti-cancer benefits and lower metastasis occurrence, in addition to decreasing the side-effect profiles. A range of 2-methoxyestradiol (2-ME) analogues, namely 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10) 15-tetraene-3-ol-17one (ESE-15-one), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) were in silico-designed by our laboratory, with the aim of improving the parent compound’s bioavailability in vivo. The main effect of these compounds is the disruption of microtubule dynamics with a resultant mitotic accumulation and induction of programmed cell death in various cancer cell lines. This in vitro study aimed to determine the cellular responses involved in the radiation sensitization effects of these analogues at low doses in breast- and lung cancer cell lines. The oestrogen receptor positive MCF-7-, oestrogen receptor negative MDA-MB-231- and triple negative BT-20 breast cancer cell lines as well as the A549 lung cancer cell line were used. The minimal compound- and radiation doses able to induce apoptosis were determined using annexin-V and cell cycle progression markers. These doses (cell line dependent) were used to pre-sensitize the cancer cells 24 hours prior to 6 gray (Gy) radiation. Experiments were conducted on samples exposed to the individual- as well as the combination treatment conditions in order to determine whether the combination treatment yielded an additive cell death response. Morphological studies included light-, fluorescence- and transmission electron microscopy. Apoptosis induction was determined by flow cytometry employing annexin V, cell cycle analysis, B-cell lymphoma 2 (Bcl-2) signalling, as well as reactive oxygen species (ROS) production. Clonogenic studies were performed by allowing colony formation for 10 days post radiation. Deoxyribonucleic acid (DNA) damage was quantified via γ-H2AX foci and micronuclei quantification. Amplification of the p53 signalling pathway was determined by western blot. Results indicated that exposing breast- and lung cancer cells to nanomolar concentrations of these analogues 24 hours prior to γ-radiation induced more cell death than the compound- and radiation treatments alone. Hypercondensed chromatin, decreased cell density, a damaged cytoskeleton and an increase in apoptotic body formation were observed in cells exposed to the combination treatment condition. An increased number of cells present in the sub-G1 phase as well as increased annexin-V staining, elevation of ROS formation and decreased Bcl-2 signalling confirmed the additive effect of the combination treatment. In addition, colony formation decreased significantly. p53 signalling pathways were significantly amplified in cells exposed to the analogues 24 hours prior to radiation, as was the amount of DNA damage. In conclusion, our results indicated that pre-treatment of breast- and lung cancer cells with low doses of 2-ME analogues sensitized breast- and lung cancer cells to γ-radiation and induced apoptosis more so than the individual treatments alone. Future studies will focus on the effect of the combination treatment on non-malignant cellular counterparts.

Keywords: cancer, microtubule dynamics, radiation therapy, radiosensitization

Procedia PDF Downloads 207
16890 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 484
16889 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 211
16888 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability

Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte

Abstract:

This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.

Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen

Procedia PDF Downloads 168
16887 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 174