Search results for: augmented young-laplace equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2387

Search results for: augmented young-laplace equation

1637 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society

Authors: Nada Abdelsadig Moahamed Saied

Abstract:

Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.

Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture

Procedia PDF Downloads 73
1636 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress

Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark

Abstract:

Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.

Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship

Procedia PDF Downloads 392
1635 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups

Authors: Sarah Mueller-Saegebrecht, André Brendler

Abstract:

Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.

Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory

Procedia PDF Downloads 94
1634 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler

Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel

Abstract:

A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.

Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties

Procedia PDF Downloads 493
1633 A Study of Islamic Stock Indices and Macroeconomic Variables

Authors: Mohammad Irfan

Abstract:

The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.

Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)

Procedia PDF Downloads 278
1632 Factor Influencing Pharmacist Engagement and Turnover Intention in Thai Community Pharmacist: A Structural Equation Modelling Approach

Authors: T. Nakpun, T. Kanjanarach, T. Kittisopee

Abstract:

Turnover of community pharmacist can affect continuity of patient care and most importantly the quality of care and also the costs of a pharmacy. It was hypothesized that organizational resources, job characteristics, and social supports had direct effect on pharmacist turnover intention, and indirect effect on pharmacist turnover intention via pharmacist engagement. This research aimed to study influencing factors on pharmacist engagement and pharmacist turnover intention by testing the proposed structural hypothesized model to explain the relationship among organizational resources, job characteristics, and social supports that effect on pharmacist turnover intention and pharmacist engagement in Thai community pharmacists. A cross sectional study design with self-administered questionnaire was conducted in 209 Thai community pharmacists. Data were analyzed using Structural Equation Modeling technique with analysis of a moment structures AMOS program. The final model showed that only organizational resources had significant negative direct effect on pharmacist turnover intention (β =-0.45). Job characteristics and social supports had significant positive relationship with pharmacist engagement (β = 0.44, and 0.55 respectively). Pharmacist engagement had significant negative relationship with pharmacist turnover intention (β = - 0.24). Thus, job characteristics and social supports had significant negative indirect effect on turnover intention via pharmacist engagement (β =-0.11 and -0.13, respectively). The model fit the data well (χ2/ degree of freedom (DF) = 2.12, the goodness of fit index (GFI)=0.89, comparative fit index (CFI) = 0.94 and root mean square error of approximation (RMSEA) = 0.07). This study can be concluded that organizational resources were the most important factor because it had direct effect on pharmacist turnover intention. Job characteristics and social supports were also help decrease pharmacist turnover intention via pharmacist engagement.

Keywords: community pharmacist, influencing factor, turnover intention, work engagement

Procedia PDF Downloads 203
1631 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 157
1630 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 309
1629 First Principle Study of Electronic and Optical Properties of YNi₄Si-Type HoNi₄Si Compound

Authors: D. K. Maurya, S. M. Saini

Abstract:

We investigate theoretically the electronic and optical properties of YNi₄Si-type HoNi₄Si compound from first principle calculations. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the frame work of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Analysis of the calculated band structure of HoNi₄Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Ho-f states peak stands tall in comparison to the small contributions made by the Ni-d and Ho-d states above Fermi level, which is consistent with experiment, in HoNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

Keywords: electronic properties, density of states, optical properties, LSDA+U approximation, YNi₄Si-type HoNi4Si compound

Procedia PDF Downloads 245
1628 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 225
1627 Using the Structural Equation Model to Explain the Effect of Supervisory Practices on Regulatory Density

Authors: Jill Round

Abstract:

In the economic system, the financial sector plays a crucial role as an intermediary between market participants, other financial institutions, and customers. Financial institutions such as banks have to make decisions to satisfy the demands of all the participants by keeping abreast of regulatory change. In recent years, progress has been made regarding frameworks, development of rules, standards, and processes to manage risks in the banking sector. The increasing focus of regulators and policymakers placed on risk management, corporate governance, and the organization’s culture is of special interest as it requires a well-resourced risk controlling function, compliance function, and internal audit function. In the past years, the relevance of these functions that make up the so-called Three Lines of Defense has moved from the backroom to the boardroom. The approach of the model can vary based on the various organizational characteristics. Due to the intense regulatory requirements, organizations operating in the financial sector have more mature models. In less regulated industries there is more cloudiness about what tasks are allocated where. All parties strive to achieve their objectives through the effective management of risks and serve the identical stakeholders. Today, the Three Lines of Defense model is used throughout the world. The research looks at trends and emerging issues in the professions of the Three Lines of Defense within the banking sector. The answers are believed to helping to explain the increasing regulatory requirements for the banking sector. While the number of supervisory practices increases the risk management requirements intensify and demand more regulatory compliance at the same time. The Structural Equation Modeling (SEM) is applied by making use of conducted surveys in the research field. It aims to describe (i) the theoretical model regarding the applicable linearity relationships, (ii) the causal relationship between multiple predictors (exogenous) and multiple dependent variables (endogenous), (iii) taking into consideration the unobservable variables and (iv) the measurement errors. The surveys conducted on the research field suggest that the observable variables are caused by various latent variables. The SEM consists of the 1) measurement model and the 2) structural model. There is a detectable correlation regarding the cause-effect relationship among the performed supervisory practices and the increasing scope of regulation. Supervisory practices reinforce the regulatory density. In the past, controls were placed after supervisory practices were conducted or incidents occurred. In further research, it is of interest to examine, whether risk management is proactive, reactive to incidents and supervisory practices or can be both at the same time.

Keywords: risk management, structural equation model, supervisory practice, three lines of defense

Procedia PDF Downloads 223
1626 Study of Evapotranspiration for Pune District

Authors: Ranjeet Sable, Mahotsavi Patil, Aadesh Nimbalkar, Prajakta Palaskar, Ritu Sagar

Abstract:

The exact amount of water used by various crops in different climatic conditions is necessary to step for design, planning, and management of irrigation schemes, water resources, scheduling of irrigation systems. Evaporation and transpiration are combinable called as evapotranspiration. Water loss from trees during photosynthesis is called as transpiration and when water gets converted into gaseous state is called evaporation. For calculation of correct evapotranspiration, we have to choose the method in such way that is should be suitable and require minimum climatic data also it should be applicable for wide range of climatic conditions. In hydrology, there are multiple correlations and regression is generally used to develop relationships between three or more hydrological variables by knowing the dependence between them. This research work includes the study of various methods for calculation of evapotranspiration and selects reasonable and suitable one Pune region (Maharashtra state). As field methods are very costly, time-consuming and not give appropriate results if the suitable climate is not maintained. Observation recorded at Pune metrological stations are used to calculate evapotranspiration with the help of Radiation Method (RAD), Modified Penman Method (MPM), Thornthwaite Method (THW), Blaney-Criddle (BCL), Christiansen Equation (CNM), Hargreaves Method (HGM), from which Hargreaves and Thornthwaite are temperature based methods. Performance of all these methods are compared with Modified Penman method and method which showing less variation with standard Modified Penman method (MPM) is selected as the suitable one. Evapotranspiration values are estimated on a monthly basis. Comparative analysis in this research used for selection for raw data-dependent methods in case of missing data.

Keywords: Blaney-Criddle, Christiansen equation evapotranspiration, Hargreaves method, precipitations, Penman method, water use efficiency

Procedia PDF Downloads 270
1625 Backstepping Design and Fractional Differential Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

Keywords: backstepping method, fractional order, synchronization, chaotic system

Procedia PDF Downloads 455
1624 Basins of Attraction for Quartic-Order Methods

Authors: Young Hee Geum

Abstract:

We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence.

Keywords: basins of attraction, convergence, multiple-root, nonlinear equation

Procedia PDF Downloads 251
1623 Efficient Layout-Aware Pretraining for Multimodal Form Understanding

Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose

Abstract:

Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.

Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention

Procedia PDF Downloads 147
1622 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.

Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment

Procedia PDF Downloads 464
1621 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios

Authors: Bernabeo R. Alberto

Abstract:

With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.

Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety

Procedia PDF Downloads 20
1620 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 136
1619 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives

Authors: Alper T. Celebi, Ali Beskok

Abstract:

Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.

Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip

Procedia PDF Downloads 156
1618 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions

Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla

Abstract:

With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.

Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect

Procedia PDF Downloads 37
1617 A Study to Understand the Factors Influencing the Behavioral Intentions of Individuals Towards Using Metaverse

Authors: Suktisuddha Goswami, Surekha Chukkali

Abstract:

Metaverse is a real time rendered 3D world which is an extension of the virtual reality, augmented reality, mixed reality, and holographic reality. While using the metaverse can enhance various aspects of our lives, it might also create certain challenges. However, since the concept of the metaverse is very new, there is a lack of research on factors influencing the individual’s behavioural intentions to use it. To address this gap, this quantitative research study was conducted to understand the factors influencing the behavioural intention of individuals towards metaverse usage. This research was conducted through a large-scale questionnaire survey of 325 Indian students at three major engineering colleges. The questionnaire was adequately customized for the present study. It was found that behavioral intention towards metaverse usage differs among individuals. There were few individuals who had no intention of using metaverse in near future, while some of them were already using it and a few were significantly inclined towards using it. The findings of this study have suggested that behavioural intention was significantly and positively related to performance expectancy and effort expectancy of individuals.

Keywords: behavioral intention, effort expectancy, performance expectancy, technology, metaverse

Procedia PDF Downloads 112
1616 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 326
1615 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River

Authors: Apichote Urantinon

Abstract:

Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.

Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics

Procedia PDF Downloads 247
1614 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 90
1613 Numerical Studies for Standard Bi-Conjugate Gradient Stabilized Method and the Parallel Variants for Solving Linear Equations

Authors: Kuniyoshi Abe

Abstract:

Bi-conjugate gradient (Bi-CG) is a well-known method for solving linear equations Ax = b, for x, where A is a given n-by-n matrix, and b is a given n-vector. Typically, the dimension of the linear equation is high and the matrix is sparse. A number of hybrid Bi-CG methods such as conjugate gradient squared (CGS), Bi-CG stabilized (Bi-CGSTAB), BiCGStab2, and BiCGstab(l) have been developed to improve the convergence of Bi-CG. Bi-CGSTAB has been most often used for efficiently solving the linear equation, but we have seen the convergence behavior with a long stagnation phase. In such cases, it is important to have Bi-CG coefficients that are as accurate as possible, and the stabilization strategy, which stabilizes the computation of the Bi-CG coefficients, has been proposed. It may avoid stagnation and lead to faster computation. Motivated by a large number of processors in present petascale high-performance computing hardware, the scalability of Krylov subspace methods on parallel computers has recently become increasingly prominent. The main bottleneck for efficient parallelization is the inner products which require a global reduction. The resulting global synchronization phases cause communication overhead on parallel computers. The parallel variants of Krylov subspace methods reducing the number of global communication phases and hiding the communication latency have been proposed. However, the numerical stability, specifically, the convergence speed of the parallel variants of Bi-CGSTAB may become worse than that of the standard Bi-CGSTAB. In this paper, therefore, we compare the convergence speed between the standard Bi-CGSTAB and the parallel variants by numerical experiments and show that the convergence speed of the standard Bi-CGSTAB is faster than the parallel variants. Moreover, we propose the stabilization strategy for the parallel variants.

Keywords: bi-conjugate gradient stabilized method, convergence speed, Krylov subspace methods, linear equations, parallel variant

Procedia PDF Downloads 160
1612 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components

Authors: Andras Dezső, Peter Baumli, George Kaptay

Abstract:

The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.

Keywords: phosphorous, steel, segregation, thermo-calc software

Procedia PDF Downloads 623
1611 Family Firms Performance: Examining the Impact of Digital and Technological Capabilities using Partial Least Squares Structural Equation Modeling and Necessary Condition Analysis

Authors: Pedro Mota Veiga

Abstract:

This study comprehensively evaluates the repercussions of innovation, digital advancements, and technological capabilities on the operational performance of companies across fifteen European Union countries following the initial wave of the COVID-19 pandemic. Drawing insights from longitudinal data sourced from the 2019 World Bank business surveys and subsequent 2020 World Bank COVID-19 follow-up business surveys, our extensive examination involves a diverse sample of 5763 family businesses. In exploring the relationships between these variables, we adopt a nuanced approach to assess the impact of innovation and digital and technological capabilities on performance. This analysis unfolds along two distinct perspectives: one rooted in necessity and the other insufficiency. The methodological framework employed integrates partial least squares structural equation modeling (PLS-SEM) with condition analysis (NCA), providing a robust foundation for drawing meaningful conclusions. The findings of the study underscore a positive influence on the performance of family firms stemming from both technological capabilities and digital advancements. Furthermore, it is pertinent to highlight the indirect contribution of innovation to enhanced performance, operating through its impact on digital capabilities. This research contributes valuable insights to the broader understanding of how innovation, coupled with digital and technological capabilities, can serve as pivotal factors in shaping the post-COVID-19 landscape for businesses across the European Union. The intricate analysis of family businesses, in particular adds depth to the comprehension of the dynamics at play in diverse economic contexts within the European Union.

Keywords: digital capabilities, technological capabilities, family firms performance, innovation, NCA, PLS-SEM

Procedia PDF Downloads 62
1610 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 498
1609 The Role of Urban Agriculture in Enhancing Food Supply and Export Potential: A Case Study of Neishabour, Iran

Authors: Mohammadreza Mojtahedi

Abstract:

Rapid urbanization presents multifaceted challenges, including environmental degradation and public health concerns. As the inevitability of urban sprawl continues, it becomes essential to devise strategies to alleviate its pressures on natural ecosystems and elevate socio-economic benchmarks within cities. This research investigates urban agriculture's economic contributions, emphasizing its pivotal role in food provisioning and export potential. Adopting a descriptive-analytical approach, field survey data was primarily collected via questionnaires. The tool's validity was affirmed by expert opinions, and its reliability secured by achieving a Cronbach's alpha score over 0.70 from 30 preliminary questionnaires. The research encompasses Neishabour's populace of 264,375, extracting a sample size of 384 via Cochran's formula. Findings reveal the significance of urban agriculture in food supply and its potential for exports, underlined by a p-value < 0.05. Neishabour's urban farming can augment the export of organic commodities, fruits, vegetables, ornamental plants, and foster product branding. Moreover, it supports the provision of fresh produce, bolstering dietary quality. Urban agriculture further impacts urban development metrics—enhancing environmental quality, job opportunities, income levels, and aesthetics, while promoting rainwater utilization. Popular cultivations include peaches, Damask roses, and poultry, tailored to available spaces. Structural equation modeling indicates urban agriculture's overarching influence, accounting for a 56% variance, predominantly in food sufficiency and export proficiency.

Keywords: urban agriculture, food supply, export potential, urban development, environmental health, structural equation modeling

Procedia PDF Downloads 55
1608 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 156