Search results for: Tianle Yang
53 Product Life Cycle Assessment of Generatively Designed Furniture for Interiors Using Robot Based Additive Manufacturing
Authors: Andrew Fox, Qingping Yang, Yuanhong Zhao, Tao Zhang
Abstract:
Furniture is a very significant subdivision of architecture and its inherent interior design activities. The furniture industry has developed from an artisan-driven craft industry, whose forerunners saw themselves manifested in their crafts and treasured a sense of pride in the creativity of their designs, these days largely reduced to an anonymous collective mass-produced output. Although a very conservative industry, there is great potential for the implementation of collaborative digital technologies allowing a reconfigured artisan experience to be reawakened in a new and exciting form. The furniture manufacturing industry, in general, has been slow to adopt new methodologies for a design using artificial and rule-based generative design. This tardiness has meant the loss of potential to enhance its capabilities in producing sustainable, flexible, and mass customizable ‘right first-time’ designs. This paper aims to demonstrate the concept methodology for the creation of alternative and inspiring aesthetic structures for robot-based additive manufacturing (RBAM). These technologies can enable the economic creation of previously unachievable structures, which traditionally would not have been commercially economic to manufacture. The integration of these technologies with the computing power of generative design provides the tools for practitioners to create concepts which are well beyond the insight of even the most accomplished traditional design teams. This paper aims to address the problem by introducing generative design methodologies employing the Autodesk Fusion 360 platform. Examination of the alternative methods for its use has the potential to significantly reduce the estimated 80% contribution to environmental impact at the initial design phase. Though predominantly a design methodology, generative design combined with RBAM has the potential to leverage many lean manufacturing and quality assurance benefits, enhancing the efficiency and agility of modern furniture manufacturing. Through a case study examination of a furniture artifact, the results will be compared to a traditionally designed and manufactured product employing the Ecochain Mobius product life cycle analysis (LCA) platform. This will highlight the benefits of both generative design and robot-based additive manufacturing from an environmental impact and manufacturing efficiency standpoint. These step changes in design methodology and environmental assessment have the potential to revolutionise the design to manufacturing workflow, giving momentum to the concept of conceiving a pre-industrial model of manufacturing, with the global demand for a circular economy and bespoke sustainable design at its heart.Keywords: robot, manufacturing, generative design, sustainability, circular econonmy, product life cycle assessment, furniture
Procedia PDF Downloads 14152 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF
Procedia PDF Downloads 6951 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy
Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang
Abstract:
In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties
Procedia PDF Downloads 15650 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction
Authors: Xiaoling Ren, Guidong Yang
Abstract:
As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility
Procedia PDF Downloads 15949 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization
Authors: Sheng-Po Tseng, Che-Hua Yang
Abstract:
Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing
Procedia PDF Downloads 20348 Shale Gas Accumulation of Over-Mature Cambrian Niutitang Formation Shale in Structure-Complicated Area, Southeastern Margin of Upper Yangtze, China
Authors: Chao Yang, Jinchuan Zhang, Yongqiang Xiong
Abstract:
The Lower Cambrian Niutitang Formation shale (NFS) deposited in the marine deep-shelf environment in Southeast Upper Yangtze (SUY), possess excellent source rock basis for shale gas generation, however, it is currently challenged by being over-mature with strong tectonic deformations, leading to much uncertainty of gas-bearing potential. With emphasis on the shale gas enrichment of the NFS, analyses were made based on the regional gas-bearing differences obtained from field gas-desorption testing of 18 geological survey wells across the study area. Results show that the NFS bears low gas content of 0.2-2.5 m³/t, and the eastern region of SUY is higher than the western region in gas content. Moreover, the methane fraction also presents the similar regional differentiation with the western region less than 10 vol.% while the eastern region generally more than 70 vol.%. Through the analysis of geological theory, the following conclusions are drawn: Depositional environment determines the gas-enriching zones. In the western region, the Dengying Formation underlying the NFS in unconformity contact was mainly plateau facies dolomite with caves and thereby bears poor gas-sealing ability. Whereas the Laobao Formation underling the NFS in eastern region was a set of siliceous rocks of shelf-slope facies, which can effectively prevent the shale gas from escaping away from the NFS. The tectonic conditions control the gas-enriching bands in the SUY, which is located in the fold zones formed by the thrust of the Southern China plate towards to the Sichuan Basin. Compared with the western region located in the trough-like folds, the eastern region at the fold-thrust belts was uplifted early and deformed weakly, resulting in the relatively less mature level and relatively slight tectonic deformation of the NFS. Faults determine whether shale gas can be accumulated in large scale. Four deep and large normal faults in the study area cut through the Niutitang Formation to the Sinian strata, directly causing a large spillover of natural gas in the adjacent areas. For the secondary faults developed within the shale formation, the reverse faults generally have a positive influence on the shale accumulation while the normal faults perform the opposite influence. Overall, shale gas enrichment targets of the NFS, are the areas with certain thickness of siliceous rocks at the basement of the Niutitang Formation, and near the margin of the paleouplift with less developed faults. These findings provide direction for shale gas exploration in South China, and also provide references for the areas with similar geological conditions all over the world.Keywords: over-mature marine shale, shale gas accumulation, structure-complicated area, Southeast Upper Yangtze
Procedia PDF Downloads 14847 Investigating the Flow Physics within Vortex-Shockwave Interactions
Authors: Frederick Ferguson, Dehua Feng, Yang Gao
Abstract:
No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme
Procedia PDF Downloads 13946 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity
Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee
Abstract:
Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant
Procedia PDF Downloads 40445 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 7044 An Automated Magnetic Dispersive Solid-Phase Extraction Method for Detection of Cocaine in Human Urine
Authors: Feiyu Yang, Chunfang Ni, Rong Wang, Yun Zou, Wenbin Liu, Chenggong Zhang, Fenjin Sun, Chun Wang
Abstract:
Cocaine is the most frequently used illegal drug globally, with the global annual prevalence of cocaine used ranging from 0.3% to 0.4 % of the adult population aged 15–64 years. Growing consumption trend of abused cocaine and drug crimes are a great concern, therefore urine sample testing has become an important noninvasive sampling whereas cocaine and its metabolites (COCs) are usually present in high concentrations and relatively long detection windows. However, direct analysis of urine samples is not feasible because urine complex medium often causes low sensitivity and selectivity of the determination. On the other hand, presence of low doses of analytes in urine makes an extraction and pretreatment step important before determination. Especially, in gathered taking drug cases, the pretreatment step becomes more tedious and time-consuming. So developing a sensitive, rapid and high-throughput method for detection of COCs in human body is indispensable for law enforcement officers, treatment specialists and health officials. In this work, a new automated magnetic dispersive solid-phase extraction (MDSPE) sampling method followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for quantitative enrichment of COCs from human urine, using prepared magnetic nanoparticles as absorbants. The nanoparticles were prepared by silanizing magnetic Fe3O4 nanoparticles and modifying them with divinyl benzene and vinyl pyrrolidone, which possesses the ability for specific adsorption of COCs. And this kind of magnetic particle facilitated the pretreatment steps by electromagnetically controlled extraction to achieve full automation. The proposed device significantly improved the sampling preparation efficiency with 32 samples in one batch within 40mins. Optimization of the preparation procedure for the magnetic nanoparticles was explored and the performances of magnetic nanoparticles were characterized by scanning electron microscopy, vibrating sample magnetometer and infrared spectra measurements. Several analytical experimental parameters were studied, including amount of particles, adsorption time, elution solvent, extraction and desorption kinetics, and the verification of the proposed method was accomplished. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.1 ng·mL-1 with recoveries ranging from 75.1 to 105.7%. Compared to traditional sampling method, this method is time-saving and environmentally friendly. It was confirmed that the proposed automated method was a kind of highly effective way for the trace cocaine and cocaine metabolites analyses in human urine.Keywords: automatic magnetic dispersive solid-phase extraction, cocaine detection, magnetic nanoparticles, urine sample testing
Procedia PDF Downloads 20443 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure
Authors: Xiaoling Ren, Guidong Yang
Abstract:
Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃
Procedia PDF Downloads 17242 Coastal Modelling Studies for Jumeirah First Beach Stabilization
Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal
Abstract:
Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix
Procedia PDF Downloads 26441 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring
Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong
Abstract:
In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system
Procedia PDF Downloads 19140 Conceptualization and Assessment of Key Competencies for Children in Preschools: A Case Study in Southwest China
Authors: Yumei Han, Naiqing Song, Xiaoping Yang, Yuping Han
Abstract:
This study explores the conceptualization of key competencies that children are expected to develop in three year preschools (age 3-6) and the assessment practices of such key competencies in China. Assessment of children development has been put into the central place of early childhood education quality evaluation system in China. In the context of students key competencies development centered education reform in China, defining and selecting key competencies of children in preschools are of great significance in that they would lay a solid foundation for children’s lifelong learning path, and they would lead to curriculum and instruction reform, teacher development reform as well as quality evaluation reform in the early childhood education area. Based on sense making theory and framework, this study adopted multiple stakeholders’ (early childhood educators, parents, evaluation administrators, scholars in the early childhood education field) perspectives and grass root voices to conceptualize and operationalize key competencies for children in preschools in Southwest China. On the ground of children development theories, Chinese and international literature related to children development and key competencies, and key competencies frameworks by UNESCO, OECD and other nations, the authors designed a two-phase sequential mixed method study to address three main questions: (a) How is early childhood key competency defined or labeled from literature and from different stakeholders’ views? (b) Based on the definitions explicated in the literature and the surveys on different stakeholders, what domains and components are regarded to constitute the key competency framework of children in three-year preschools in China? (c) How have early childhood key competencies been assessed and measured, and how such assessment and measurement contribute to enhancing early childhood development quality? On the first phase, a series of focus group surveys were conducted among different types of stakeholders around the research questions. Moreover, on the second phase, based on the coding of the participants’ answers, together with literature synthesis findings, a questionnaire survey was designed and conducted to select most commonly expected components of preschool children’s key competencies. Semi-structured open questions were also included in the questionnaire for the participants to add on competencies beyond the checklist. Rudimentary findings show agreeable concerns on the significance and necessity of conceptualization and assessment of key competencies for children in preschools, and a key competencies framework composed of 7 domains and 25 indicators was constructed. Meanwhile, the findings also show issues in the current assessment practices of children’s competencies, such as lack of effective assessment tools, lack of teacher capacity in applying the tools to evaluating children and advancing children development accordingly. Finally, the authors put forth suggestions and implications for China and international communities in terms of restructuring early childhood key competencies framework, and promoting child development centered reform in early childhood education quality evaluation and development.Keywords: assessment, conceptualization, early childhood education quality in China, key competencies
Procedia PDF Downloads 25139 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress
Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang
Abstract:
The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology
Procedia PDF Downloads 9438 Digital Advance Care Planning and Directives: Early Observations of Adoption Statistics and Responses from an All-Digital Consumer-Driven Approach
Authors: Robert L. Fine, Zhiyong Yang, Christy Spivey, Bonnie Boardman, Maureen Courtney
Abstract:
Importance: Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Reengineering ACP by using a web-based, consumer-driven process has recently been suggested. We report early experience with such a process. Objective: Begin to analyze the potential of the creation and use of ACP/ADs as generated by a consumer-friendly, digital process by 1) assessing the likelihood that consumers would create ACP/ADs without structured intervention by medical or legal professionals, and 2) analyzing the responses to determine if the plans can help doctors better understand a person’s goals, preferences, and priorities for their medical treatments and the naming of healthcare agents. Design: The authors chose 900 users of MyDirectives.com, a digital ACP/AD tool, solely based on their state of residence in order to achieve proportional representation of all 50 states by population size and then reviewed their responses, summarizing these through descriptive statistics including treatment preferences, demographics, and revision of preferences. Setting: General United States population. Participants: The 900 participants had an average age of 50.8 years (SD = 16.6); 84.3% of the men and 91% of the women were in self-reported good health when signing their ADs. Main measures: Preferences regarding the use of life-sustaining treatments, where to spend final days, consulting a supportive and palliative care team, attempted cardiopulmonary resuscitation (CPR), autopsy, and organ and tissue donation. Results: Nearly 85% of respondents prefer cessation of life-sustaining treatments during their final days whenever those may be, 76% prefer to spend their final days at home or in a hospice facility, and 94% wanted their future doctors to consult a supportive and palliative care team. 70% would accept attempted CPR in certain limited circumstances. Most respondents would want an autopsy under certain conditions, and 62% would like to donate their organs. Conclusions and relevance: Analysis of early experience with an all-digital web-based ACP/AD platform demonstrates that individuals from a wide range of ages and conditions can engage in an interrogatory process about values, goals, preferences, and priorities for their medical treatments by developing advance directives and easily make changes to the AD created. Online creation, storage, and retrieval of advance directives has the potential to remove barriers to ACP/AD and, thus, to further improve patient-centered end-of-life care.Keywords: Advance Care Plan, Advance Decisions, Advance Directives, Consumer; Digital, End of Life Care, Goals, Living Wills, Prefences, Universal Advance Directive, Statements
Procedia PDF Downloads 32737 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma
Authors: Aoxue Yang, Weili Tian, Haikun Liu
Abstract:
Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and BTSCs. Identifying markers specifically expressed by brain tumor stem cells (BTSCs) may enable specific therapies that spare their regular tissue-resident counterparts. By ribosome profiling analysis, we have identified that glycerol-3-phosphate dehydrogenase 1 (GPD1) is expressed by dormant BTSCs but not by NSCs. Through different stress-induced experiments in vitro, we found that only dexamethasone (DEXA) can significantly increase the expression of GPD1 in NSCs. Adversely, mifepristone (MIFE) which is classified as glucocorticoid receptors antagonists, could decrease GPD1 protein level and weaken the proliferation and stemness in BTSCs. Furthermore, DEXA can induce GPD1 expression in tumor-bearing mice brains and shorten animal survival, whereas MIFE has a distinct adverse effect that prolonged mice lifespan. Knocking out GR in NSC can block the upregulation of GPD1 inducing by DEXA, and we find the specific sequences on GPD1 promotor combined with GR, thus improving the efficiency of GPD1 transcription from CHIP-Seq. Moreover, GR and GPD1 are highly co-stained on GBM sections obtained from patients and mice. All these findings confirmed that GR could regulate GPD1 and loss of GPD1 Impairs Multiple Pathways Important for BTSCs Maintenance GPD1 is also a critical enzyme regulating glycolysis and lipid synthesis. We observed that DEXA and MIFE could change the metabolic profiles of BTSCs by regulating GPD1 to shift the transition of cell dormancy. Our transcriptome and lipidomics analysis demonstrated that cell cycle signaling and phosphoglycerides synthesis pathways contributed a lot to the inhibition of GPD1 caused by MIFE. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and contribute to BTSC dormancy. Inhibition of GR can dramatically reduce GPD1 and extend the survival duration of GBM-bearing mice. The molecular link between GPD1 and GR may give us an attractive therapeutic target for glioblastoma.Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides
Procedia PDF Downloads 13236 The Effectiveness of Using Dramatic Conventions as the Teaching Strategy on Self-Efficacy for Children With Autism Spectrum Disorder
Authors: Tso Sheng-Yang, Wang Tien-Ni
Abstract:
Introduction and Purpose: Previous researchers have documented children with ASD (Autism Spectrum Disorders) prefer to escaping internal privates and external privates when they face tough conditions they can’t control or they don’t like.Especially, when children with ASD need to learn challenging tasks, such us Chinese language, their inappropriate behaviors will occur apparently. Recently, researchers apply positive behavior support strategies for children with ASD to enhance their self-efficacy and therefore to reduce their adverse behaviors. Thus, the purpose of this research was to design a series of lecture based on art therapy and to evaluate its effectiveness on the child’s self-efficacy. Method: This research was the single-case design study that recruited a high school boy with ASD. Whole research can be separated into three conditions. First, baseline condition, before the class started and ended, the researcher collected participant’s competencies of self-efficacy every session. In intervention condition, the research used dramatic conventions to teach the child in Chinese language twice a week.When the data was stable across three documents, the period entered to the maintenance condition. In maintenance condition, the researcher only collected the score of self-efficacynot to do other interventions five times a month to represent the effectiveness of maintenance.The time and frequency of data collection among three conditions are identical. Concerning art therapy, the common approach, e.g., music, drama, or painting is to use art medium as independent variable. Due to visual cues of art medium, the ASD can be easily to gain joint attention with teachers. Besides, the ASD have difficulties in understanding abstract objectives Thus, using the drama convention is helpful for the ASD to construct the environment and understand the context of Classical Chinese. By real operation, it can improve the ASD to understand the context and construct prior knowledge. Result: Bassd on the 10-points Likert scale and research, we product following results. (a) In baseline condition, the average score of self-efficacyis 1.12 points, rangedfrom 1 to 2 points, and the level change is 0 point. (b)In intervention condition, the average score of self-efficacy is 7.66 points rangedfrom 7 to 9 points, and the level change is 1 point. (c)In maintenance condition, the average score of self-efficacy is 6.66 points rangedfrom 6 to 7 points, and the level change is 1 point. Concerning immediacy of change, between baseline and intervention conditions, the difference is 5 points. No overlaps were found between these two conditions. Conclusion: According to the result, we find that it is effective that using dramatic conventions a s teaching strategies to teach children with ASD. The result presents the score of self-efficacyimmediately enhances when the dramatic conventions commences. Thus, we suggest the teacher can use this approach and adjust, based on the student’s trait, to teach the ASD on difficult task.Keywords: dramatic conventions, autism spectrum disorder, slef-efficacy, teaching strategy
Procedia PDF Downloads 8335 Research on Reminiscence Therapy Game Design
Authors: Web Huei Chou, Li Yi Chun, Wenwe Yu, Han Teng Weng, H. Yuan, T. Yang
Abstract:
The prevalence of dementia is estimated to rise to 78 million by 2030 and 139 million by 2050. Among those affected, Alzheimer's disease is the most common form of dementia, contributing to 60–70% of cases. Addressing this growing challenge is crucial, especially considering the impact on older individuals and their caregivers. To reduce the behavioral and psychological symptoms of dementia, people with dementia use a variety of pharmaceutical and non-pharmacological treatments, and some studies have found the use of non-pharmacological interventions. Treatment of depression, cognitive function, and social activities has potential benefits. Butler developed reminiscence therapy as a method of treating dementia. Through ‘life review,’ individuals can recall their past events, activities, and experiences, which can reduce the depression of the elderly and improve their Quality of life to help give meaning to their lives and help them live independently. The life review process uses a variety of memory triggers, such as household items, past objects, photos, and music, and can be conducted collectively or individually and structured or unstructured. However, despite the advantages of nostalgia therapy, past research has always pointed out that current research lacks rigorous experimental evaluation and cannot describe clear research results and generalizability. Therefore, this study aims to study physiological sensing experiments to find a feasible experimental and verification method to provide clearer design and design specifications for reminiscence therapy and to provide a more widespread application for healthy aging. This study is an ongoing research project, a collaboration between the School of Design at Yunlin University of Science and Technology in Taiwan and the Department of Medical Engineering at Chiba University in Japan. We use traditional rice dishes from Taiwan and Japan as nostalgic content to construct a narrative structure for the elderly in the two countries respectively for life review activities, providing an easy-to-carry nostalgic therapy game with an intuitive interactive design. This experiment is expected to be completed in 36 months. The design team constructed and designed the game after conducting literary and historical data surveys and interviews with elders to confirm the nostalgic historical data in Taiwan and Japan. The Japanese team planned the Electrodermal Activity (EDA) and Blood Volume Pulse (BVP) experimental environments and Data calculation model, and then after conducting experiments on elderly people in two places, the research results were analyzed and discussed together. The research has completed the first 24 months of pre-study, design work, and pre-study and has entered the project acceptance stage.Keywords: reminiscence therapy, aging health, design research, life review
Procedia PDF Downloads 3434 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan
Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system
Procedia PDF Downloads 8333 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 20432 Regulating the Ottomans on Turkish Television and the Making of Good Citizens
Authors: Chien Yang Erdem
Abstract:
This paper takes up the proliferating historical dramas and children’s programs featuring the Ottoman-Islamic legacy on Turkish television as a locus where the processes of subjectification take place. A critical analysis of this emergent cultural phenomenon reveals an alliance of neoliberal and neoconservative political rationalities based on which the Turkish media is restructured to transform society. The existing debates have focused on how the Ottoman historical dramas manifest the Justice and Development Party’s (Adalet ve Kalkınma Partisi) neo-Ottomanist ideology and foreign policy. However, this approach tends to overlook the more complex relationship between the media, government, and society. Employing Michel Foucault’s notion of 'technologies of the self,' this paper aims to examine the governing practices that are deployed to regulate the media and to transform individual citizens into governable subjects in contemporary Turkey. First, through a brief discussion of recent development of the Turkish media towards an authoritarian model, the paper suggests that the relation between the Ottoman television drama and the political subject in question cannot be adequately examined without taking into account the force of the market. Second, by focusing on the managerial restructuring of the Turkish Television and Radio Corporation (Türkiye Radyo ve Televizyon Kurumu), the paper aims to illustrate the rationale and process through which the Turkish media sector is transformed into an integral part of the free market where the government becomes a key actor. The paper contends that this new sphere of free market is organized in a way that enables direct interference of the government and divides media practitioners and consumers into opposing categories through their own participation in the media market. On the one hand, a 'free subject' is constituted based on the premise that the market is a sphere where individuals are obliged to exercise their right to freedom (of choice, lifestyle, and expression). On the other hand, this 'free subject' is increasingly subjugated to such disciplinary practices as censorship for being on the wrong side of the government. Finally, the paper examines the relation between the restructured Turkish media market and the proliferation of Ottoman television drama in the 2010s. The study maintains that the reorganization of the media market has produced a condition where private sector is encouraged to take an active role in reviving Turkey’s Ottoman-Islamic cultural heritage and promulgating moral-religious values. Paying specific attention to the controversial case of Magnificent Century (Muhteşem Yüzyıl) in contrast with TRT’s Ottoman historical drama and children’s programs, the paper aims to identify the ways in which individual citizens are directed to conduct themselves as a virtuous citizenry. It is through the double movement between the governing practices associated with the media market and those concerning the making of a 'conservative generation' that a subject of citizenry of new Turkey is constituted.Keywords: neoconservatism, neoliberalism, ottoman historical drama, technologies of the self, Turkish television
Procedia PDF Downloads 14231 Cultural Knowledge Transfer of the Inherited Karen Backstrap Weaving for the 4th Generation of a Pwo Karen Community
Authors: Suphitcha Charoen-Amornkitt, Chokeanand Bussracumpakorn
Abstract:
The tendency of the Karen backstrap weaving succession has gradually decreased due to the difficulty of weaving techniques and the relocation of the young generation. The Yang Nam Klat Nuea community, Nong Ya Plong District, Phetchaburi, is a Pwo Karen community that is seriously confronted with a lack of cultural heritage. Thus, a group of weavers was formed to revive the knowledge of weaving. However, they have been gradually confronted with culture assimilation to mainstream culture from the desire for marketing acceptance and imperative and forced the extinction of culture due to the disappearance of weaving details and techniques. Although there are practical solutions, i.e., product development, community improvement, knowledge improvement, and knowledge transfer, to inherit the Karen weaving culture, people in the community cannot fulfill their deep intention about the weaving inheritance as most solutions have focused on developing the commercial products and making the income instead of inheriting their knowledge. This research employed qualitative user research with an in-depth user interview to study communal knowledge transfer succession based on the internal involved parties, i.e., four expert weavers, three young weavers, and three 4th generation villagers. The purpose is to explore the correlation and mindset of villagers towards the culture with specific issues, including the psychology of culture, core knowledge and learning methods, cultural inheritance, and cultural engagement. As a result, the existing models of knowledge management mostly focused on tangible strategies, which can notice progress in short terms, such as direct teaching and consistent practicing. At the same time, the motivation and passion of inheritors were abolished while the research found that the young generation who profoundly connected with the textile culture will have a more significant intention to continue the culture. Therefore, this research suggests both internal and external solutions to treat the community. Regarding the internal solutions, family, weaving group, and school have an important role to participate with young villagers by encouraging activities to support the cultivating of Karen’s history, understanding their identities, and adapting the culture as a part of daily life. At the same time, collecting all of the knowledge in the archives, e.g., recorded video, instruction, and books, can crucially prevent the culture from extinction. Regarding the external solutions, this study suggests that working with social media will enhance the intimacy of textile culture, while the community should relieve the roles in marketing competition and start to drive cultural experiences to create a new market position. In conclusion, this research intends to explore the causes and motivation to support the transfer of the culture to the 4th generation villagers and to raise awareness of the diversity of culture in society. With these suggestions and the desire to improve pride and confidence in culture, the community agrees that strengthening the relationships between the young villagers and the weaving culture can bring attention and interest back to the weaving culture.Keywords: Pwo Karen textile culture, backstrap weaving succession, cultural inheritance, knowledge transfer, knowledge management
Procedia PDF Downloads 9730 Morphotropic Phase Boundary in Ferromagnets: Unusual Magnetoelastic Behavior In Tb₁₋ₓNdₓCo₂
Authors: Adil Murtaza, Muhammad Tahir Khan, Awais Ghani, Chao Zhou, Sen Yang, Xiaoping Song
Abstract:
The morphotropic phase boundary (MPB); a boundary between two different crystallographic symmetries in the composition–temperature phase diagram has been widely studied in ferroelectrics and recently has drawn interest in ferromagnets for obtaining enhanced large field-induced strain. At MPB, the system gets a compressed free energy state, which allows the polarization to freely rotate and hence results in a high magnetoelastic response (e.g., high magnetization, low coercivity, and large magnetostriction). Based on the same mechanism, we designed MPB in a ferromagnetic Tb₁₋ₓNdₓCo₂ system. The temperature-dependent magnetization curves showed spin reorientation (SR); which can be explained by a two-sublattice model. Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb₀.₃₅Nd₀.₆₅Co₂ exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The coercive field (HC) under a low magnetic field and first anisotropy constant (K₁) shows a minimum value at MPB composition of x=0.65. A detailed spin configuration diagram is provided for the Tb₁₋ₓNdₓCo₂ around the composition for the anisotropy compensation; this can guide the development of novel magnetostrictive materials. The anisotropic magnetostriction (λS) first decreased until x=0.8 and then continuously increased in the negative direction with further increase of Nd concentration. In addition, the large ratio between magnetostriction and the absolute values of the first anisotropy constant (λS/K₁) appears at MPB, indicating that Tb₀.₃₅Nd₀.₆₅Co₂ has good magnetostrictive properties. Present work shows an anomalous type of MPB in ferromagnetic materials, revealing that MPB can also lead to a weakening of magnetoelastic behavior as shown in the ferromagnetic Tb₁₋ₓNdₓCo₂ system. Our work shows the universal presence of MPB in ferromagnetic materials and suggests the differences between different ferromagnetic MPB systems that are important for substantial improvement of magnetic and magnetostrictive properties. Based on the results of this study, similar MPB effects might be achieved in other ferroic systems that can be used for technological applications. The finding of magnetic MPB in the ferromagnetic system leads to some important significances. First, it provides a better understanding of the fundamental concept of spin reorientation transitions (SRT) like ferro-ferro transitions are not only reorientation of magnetization but also crystal symmetry change upon magnetic ordering. Second, the flattened free energy corresponding to a low energy barrier for magnetization rotation and enhanced magnetoelastic response near MPB. Third, to attain large magnetostriction with MPB approach two terminal compounds have different easy magnetization directions below Curie temperature Tc in order to accomplish the weakening of magnetization anisotropy at MPB (as in ferroelectrics), thus easing the magnetic domain switching and the lattice distortion difference between two terminal compounds should be large enough, e.g., lattice distortion of R symmetry ˃˃ lattice distortion of T symmetry). So that the MPB composition agrees to a nearly isotropic state along with large ‘net’ lattice distortion, which is revealed in a higher value of magnetostriction.Keywords: magnetization, magnetostriction, morphotropic phase boundary (MPB), phase transition
Procedia PDF Downloads 14629 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties
Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim
Abstract:
The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification
Procedia PDF Downloads 12528 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China
Authors: Mengdan Guo, Zongmin Wang, Haibo Yang
Abstract:
Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index
Procedia PDF Downloads 5527 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 13226 Innovation Mechanism in Developing Cultural and Creative Industries
Authors: Liou Shyhnan, Chia Han Yang
Abstract:
The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing
Procedia PDF Downloads 32525 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management
Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin
Abstract:
The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus
Procedia PDF Downloads 11424 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems
Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo
Abstract:
Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic
Procedia PDF Downloads 139