Search results for: stochastic volatility model
16392 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi
Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu
Abstract:
A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi
Procedia PDF Downloads 17316391 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 18716390 Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis
Authors: Kyeong Hoon Park, Taiji Mazuda
Abstract:
High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined.Keywords: base-isolation, bilinear model, high damping rubber, loading test
Procedia PDF Downloads 12316389 Analysis of Reliability of Mining Shovel Using Weibull Model
Authors: Anurag Savarnya
Abstract:
The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.Keywords: reliability, Weibull model, electric mining shovel
Procedia PDF Downloads 51416388 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 24316387 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 35016386 Developing Fuzzy Logic Model for Reliability Estimation: Case Study
Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed
Abstract:
The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.Keywords: fuzzy logic, reliability, repairable systems, FMEA
Procedia PDF Downloads 61416385 Developing a Systems Dynamics Model for Security Management
Authors: Kuan-Chou Chen
Abstract:
This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.Keywords: system thinking, information security systems, security management, simulation
Procedia PDF Downloads 43016384 The Role of the Rate of Profit Concept in Creating Economic Stability in Islamic Financial Market
Authors: Trisiladi Supriyanto
Abstract:
This study aims to establish a concept of rate of profit on Islamic banking that can create economic justice and stability in the Islamic Financial Market (Banking and Capital Markets). A rate of profit that creates economic justice and stability can be achieved through its role in maintaining the stability of the financial system in which there is an equitable distribution of income and wealth. To determine the role of the rate of profit as the basis of the profit sharing system implemented in the Islamic financial system, we can see the connection of rate of profit in creating financial stability, especially in the asset-liability management of financial institutions that generate a stable net margin or the rate of profit that is not affected by the ups and downs of the market risk factors, including indirect effect on interest rates. Furthermore, Islamic financial stability can be seen from the role of the rate of profit on the stability of the Islamic financial assets value that are measured from the Islamic financial asset price volatility in the Islamic Bond Market in the Capital Market.Keywords: economic justice, equitable distribution of income, equitable distribution of wealth, rate of profit, stability in the financial system
Procedia PDF Downloads 31416383 Location Quotients Model in Turkey’s Provinces and Nuts II Regions
Authors: Semih Sözer
Abstract:
One of the most common issues in economic systems is understanding characteristics of economic activities in cities and regions. Although there are critics to economic base models in conceptual and empirical aspects, these models are useful tools to examining the economic structure of a nation, regions or cities. This paper uses one of the methodologies of economic base models namely the location quotients model. Data for this model includes employment numbers of provinces and NUTS II regions in Turkey. Time series of data covers the years of 1990, 2000, 2003, and 2009. Aim of this study is finding which sectors are export-base and which sectors are import-base in provinces and regions. Model results show that big provinces or powerful regions (population, size etc.) mostly have basic sectors in their economic system. However, interesting facts came from different sectors in different provinces and regions in the model results.Keywords: economic base, location quotients model, regional economics, regional development
Procedia PDF Downloads 42416382 Media Richness Perspective on Web 2.0 Usage for Knowledge Creation: The Case of the Cocoa Industry in Ghana
Authors: Albert Gyamfi
Abstract:
Cocoa plays critical role in the socio-economic development of Ghana. Meanwhile, smallholder farmers most of whom are illiterate dominate the industry. According to the cocoa-based agricultural knowledge and information system (AKIS) model knowledge is created and transferred to the industry between three key actors: cocoa researchers, extension experts, and cocoa farmers. Dwelling on the SECI model, the media richness theory (MRT), and the AKIS model, a conceptual model of web 2.0-based AKIS model (AKIS 2.0) is developed and used to assess the possible effects of social media usage for knowledge creation in the Ghanaian cocoa industry. A mixed method approach with a survey questionnaire was employed, and a second-order multi-group structural equation model (SEM) was used to analyze the data. The study concludes that the use of web 2.0 applications for knowledge creation would lead to sustainable interactions among the key knowledge actors for effective knowledge creation in the cocoa industry in Ghana.Keywords: agriculture, cocoa, knowledge, media, web 2.0
Procedia PDF Downloads 33316381 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.Keywords: speed model, artificial neural network, arterial, mixed traffic
Procedia PDF Downloads 38816380 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: interval forecasts, time series, electricity prices, reg-SARIMA methods
Procedia PDF Downloads 13116379 Modeling Heat-Related Mortality Based on Greenhouse Emissions in OECD Countries
Authors: Anderson Ngowa Chembe, John Olukuru
Abstract:
Greenhouse emissions by human activities are known to irreversibly increase global temperatures through the greenhouse effect. This study seeks to propose a mortality model with sensitivity to heat-change effects as one of the underlying parameters in the model. As such, the study sought to establish the relationship between greenhouse emissions and mortality indices in five OECD countries (USA, UK, Japan, Canada & Germany). Upon the establishment of the relationship using correlation analysis, an additional parameter that accounts for the sensitivity of heat-changes to mortality rates was incorporated in the Lee-Carter model. Based on the proposed model, new parameter estimates were calculated using iterative algorithms for optimization. Finally, the goodness of fit for the original Lee-Carter model and the proposed model were compared using deviance comparison. The proposed model provides a better fit to mortality rates especially in USA, UK and Germany where the mortality indices have a strong positive correlation with the level of greenhouse emissions. The results of this study are of particular importance to actuaries, demographers and climate-risk experts who seek to use better mortality-modeling techniques in the wake of heat effects caused by increased greenhouse emissions.Keywords: climate risk, greenhouse emissions, Lee-Carter model, OECD
Procedia PDF Downloads 34316378 Design Channel Non Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC
Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa
Abstract:
This paper presents Carrier Sense Multiple Access (CSMA) communication model based on SoC design methodology. Such model can be used to support the modelling of the complex wireless communication systems, therefore use of such communication model is an important technique in the construction of high performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).Keywords: systemC, modelling, simulation, CSMA
Procedia PDF Downloads 42816377 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 14716376 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia
Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca
Abstract:
This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation
Procedia PDF Downloads 23016375 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing
Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo
Abstract:
Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.Keywords: model, shale gas, concentration, organic compounds
Procedia PDF Downloads 22616374 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.Keywords: agile methodology, health analytics, unified process model, UML
Procedia PDF Downloads 50616373 Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors
Authors: Robert Setekera, Ramses van der Toorn
Abstract:
We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics.Keywords: avalanche multiplication, avalanche current, bipolar transistors, compact modeling, electric field, impact ionization, local avalanche
Procedia PDF Downloads 62216372 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic
Authors: Jiri Dufek
Abstract:
The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)Keywords: trip distribution, three dimension, transport model, municipalities
Procedia PDF Downloads 13116371 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods
Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk
Abstract:
The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate
Procedia PDF Downloads 36916370 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles
Authors: Mohsen Solimani Babarsad, Payam Taheri
Abstract:
Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’
Procedia PDF Downloads 36316369 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”
Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani
Abstract:
The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density
Procedia PDF Downloads 12416368 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 15016367 Designing Equivalent Model of Floating Gate Transistor
Authors: Birinderjit Singh Kalyan, Inderpreet Kaur, Balwinder Singh Sohi
Abstract:
In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available.Keywords: FGMOS, floating gate transistor, capacitive coupling coefficient, SPICE model
Procedia PDF Downloads 54516366 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility
Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu
Abstract:
The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education
Procedia PDF Downloads 31316365 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm
Authors: Suparman Suparman
Abstract:
A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)
Procedia PDF Downloads 35516364 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models
Authors: Mohammad Saber Rohi, Saghar Heidari
Abstract:
In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality
Procedia PDF Downloads 7316363 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model
Authors: K. G. R. M. Jayathilake, S. Rudra
Abstract:
Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood
Procedia PDF Downloads 125