Search results for: outside wall subsystems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1349

Search results for: outside wall subsystems

629 Investigating the Nail Walls Performance in Jointed Rock Medium

Authors: Ibrahim Naeimifar, Omid Naeemifar

Abstract:

Evaluation of the excavation-induced ground movements is an important design aspect of support systems in urban areas. Geological and geotechnical conditions of an excavation area have significant effects on excavation-induced ground movements and the related damage. This paper is aimed at studying the performance of excavation walls supported by nails in jointed rock medium. The performance of nailed walls is investigated based on evaluating the excavation-induced ground movements. For this purpose, a set of calibrated 2D finite element models is developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process. The results of this paper highlight effects of different parameters such as joint inclinations, the anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails.

Keywords: finite element, jointed rock, nailing, performance

Procedia PDF Downloads 279
628 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 62
627 The Rupture Potential of Nerve Tissue Constrained Intracranial Saccular Aneurysm

Authors: M. Alam, P. Seshaiyer

Abstract:

The rupture predictability of intracranial aneurysm is one of the most important parameters for physicians in surgical treatment. As most of the intracranial aneurysms are asymptomatic, still the rupture potential of both symptomatic and asymptomatic lesions is relatively unknown. Moreover, an intracranial aneurysm constrained by a nerve tissue might be a common scenario for a physician to deal with during the treatment process. Here, we perform a computational modeling of nerve tissue constrained intracranial saccular aneurysm to show a protective role of constrained tissue on the aneurysm. A comparative parametric study of the model also performs taking long constraint, medium constraint, short constraint, point contact, narrow neck aneurysm, wide neck aneurysm as parameters for the analysis. Results show that contact constraint aneurysm generates less stress near the fundus compared to no constraint aneurysm, hence works as a protective wall for the aneurysm not to be ruptured.

Keywords: rupture potential, intracranial saccular aneurysm, anisotropic hyper-elastic material, finite element analysis

Procedia PDF Downloads 204
626 Kinetic Parameter Estimation from Thermogravimetry and Microscale Combustion Calorimetry

Authors: Rhoda Afriyie Mensah, Lin Jiang, Solomon Asante-Okyere, Xu Qiang, Cong Jin

Abstract:

Flammability analysis of extruded polystyrene (XPS) has become crucial due to its utilization as insulation material for energy efficient buildings. Using the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, the degradation kinetics of two pure XPS from the local market, red and grey ones, were obtained from the results of thermogravity analysis (TG) and microscale combustion calorimetry (MCC) experiments performed under the same heating rates. From the experiments, it was discovered that red XPS released more heat than grey XPS and both materials showed two mass loss stages. Consequently, the kinetic parameters for red XPS were higher than grey XPS. A comparative evaluation of activation energies from MCC and TG showed an insignificant degree of deviation signifying an equivalent apparent activation energy from both methods. However, different activation energy profiles as a result of the different chemical pathways were presented when the dependencies of the activation energies on extent of conversion for TG and MCC were compared.

Keywords: flammability, microscale combustion calorimetry, thermogravity analysis, thermal degradation, kinetic analysis

Procedia PDF Downloads 169
625 The Role of Uterine Artery Embolization in the Management of Postpartum Hemorrhage

Authors: Chee Wai Ku, Pui See Chin

Abstract:

As an emerging alternative to hysterectomy, uterine artery embolization (UAE) has been widely used in the management of fibroids and in controlling postpartum hemorrhage (PPH) unresponsive to other therapies. Research has shown UAE to be a safe, minimally invasive procedure with few complications and minimal effects on future fertility. We present two cases highlighting the use of UAE in preventing PPH in a patient with a large fibroid at the time of cesarean section and in the treatment of secondary PPH refractory to other therapies in another patient. We present a 36-year primiparous woman who booked at 18+6 weeks gestation with a 13.7 cm subserosal fibroid at the lower anterior wall of the uterus near the cervix and a 10.8 cm subserosal fibroid in the left wall. Prophylactic internal iliac artery occlusion balloons were placed prior to the planned classical midline cesarean section. The balloons were inflated once the baby was delivered. Bilateral uterine arteries were embolized subsequently. The estimated blood loss (EBL) was 400 mls and hemoglobin (Hb) remained stable at 10 g/DL. Ultrasound scan 2 years postnatally showed stable uterine fibroids 10.4 and 7.1 cm, which was significantly smaller than before. We present the second case of a 40-year-old G2P1 with a previous cesarean section for failure to progress. There were no antenatal problems, and the placenta was not previa. She presented with term labour and underwent an emergency cesarean section for failed vaginal birth after cesarean. Intraoperatively extensive adhesions were noted with bladder drawn high, and EBL was 300 mls. Postpartum recovery was uneventful. She presented with secondary PPH 3 weeks later complicated by hypovolemic shock. She underwent an emergency examination under anesthesia and evacuation of the uterus, with EBL 2500mls. Histology showed decidua with chronic inflammation. She was discharged well with no further PPH. She subsequently returned one week later for secondary PPH. Bedside ultrasound showed that the endometrium was thin with no evidence of retained products of conception. Uterotonics were administered, and examination under anesthesia was performed, with uterine Bakri balloon and vaginal pack insertion after. EBL was 1000 mls. There was no definite cause of PPH with no uterine atony or products of conception. To evaluate a potential cause, pelvic angiogram and super selective left uterine arteriogram was performed which showed profuse contrast extravasation and acute bleeding from the left uterine artery. Superselective embolization of the left uterine artery was performed. No gross contrast extravasation from the right uterine artery was seen. These two cases demonstrated the superior efficacy of UAE. Firstly, the prophylactic use of intra-arterial balloon catheters in pregnant patients with large fibroids, and secondly, in the diagnosis and management of secondary PPH refractory to uterotonics and uterine tamponade. In both cases, the need for laparotomy hysterectomy was avoided, resulting in the preservation of future fertility. UAE should be a consideration for hemodynamically stable patients in centres with access to interventional radiology.

Keywords: fertility preservation, secondary postpartum hemorrhage, uterine embolization, uterine fibroids

Procedia PDF Downloads 179
624 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions

Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti

Abstract:

Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.

Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing

Procedia PDF Downloads 338
623 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration

Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa

Abstract:

This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.

Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools

Procedia PDF Downloads 243
622 Influence of Major Axis on the Aerodynamic Characteristics of Elliptical Section

Authors: K. B. Rajasekarababu, J. Karthik, G. Vinayagamurthy

Abstract:

This paper is intended to explain the influence of major axis on aerodynamic characteristics of elliptical section. Many engineering applications such as off shore structures, bridge piers, civil structures and pipelines can be modelled as a circular cylinder but flow over complex bodies like, submarines, Elliptical wing, fuselage, missiles, and rotor blades, in which the parameters such as axis ratio can influence the flow characteristics of the wake and nature of separation. Influence of Major axis in Flow characteristics of elliptical sections are examined both experimentally and computationally in this study. For this research, four elliptical models with varying major axis [*AR=1, 4, 6, 10] are analysed. Experimental works have been conducted in a subsonic wind tunnel. Furthermore, flow characteristics on elliptical model are predicted from k-ε turbulence model using the commercial CFD packages by pressure based transient solver with Standard wall conditions.The analysis can be extended to estimation and comparison of Drag coefficient and Fatigue analysis of elliptical sections.

Keywords: elliptical section, major axis, aerodynamic characteristics, k-ε turbulence model

Procedia PDF Downloads 420
621 Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass

Authors: Karen E. Supan

Abstract:

Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature.

Keywords: biomass, switchgrass, thermal degradation, thermogravimetric analysis

Procedia PDF Downloads 104
620 Humanitarian Emergency of the Refugee Condition for Central American Immigrants in Irregular Situation

Authors: María de los Ángeles Cerda González, Itzel Arriaga Hurtado, Pascacio José Martínez Pichardo

Abstract:

In México, the recognition of refugee condition is a fundamental right which, as host State, has the obligation of respect, protect, and fulfill to the foreigners – where we can find the figure of immigrants in irregular situation-, that cannot return to their country of origin for humanitarian reasons. The recognition of the refugee condition as a fundamental right in the Mexican law system proceeds under these situations: 1. The immigrant applies for the refugee condition, even without the necessary proving elements to accredit the humanitarian character of his departure from his country of origin. 2. The immigrant does not apply for the recognition of refugee because he does not know he has the right to, even if he has the profile to apply for. 3. The immigrant who applies fulfills the requirements of the administrative procedure and has access to the refugee recognition. Of the three situations above, only the last one is contemplated for the national indexes of the status refugee; and the first two prove the inefficiency of the governmental system viewed from its lack of sensibility consequence of the no education in human rights matter and which results in the legal vulnerability of the immigrants in irregular situation because they do not have access to the procuration and administration of justice. In the aim of determining the causes and consequences of the no recognition of the refugee status, this investigation was structured from a systemic analysis which objective is to show the advances in Central American humanitarian emergency investigation, the Mexican States actions to protect, respect and fulfil the fundamental right of refugee of immigrants in irregular situation and the social and legal vulnerabilities suffered by Central Americans in Mexico. Therefore, to achieve the deduction of the legal nature of the humanitarian emergency from the Human Rights as a branch of the International Public Law, a conceptual framework is structured using the inductive deductive method. The problem statement is made from a legal framework to approach a theoretical scheme under the theory of social systems, from the analysis of the lack of communication of the governmental and normative subsystems of the Mexican legal system relative to the process undertaken by the Central American immigrants to achieve the recognition of the refugee status as a human right. Accordingly, is determined that fulfilling the obligations of the State referent to grant the right of the recognition of the refugee condition, would mean a guideline for a new stage in Mexican Law, because it would enlarge the constitutional benefits to everyone whose right to the recognition of refugee has been denied an as consequence, a great advance in human rights matter would be achieved.

Keywords: central American immigrants in irregular situation, humanitarian emergency, human rights, refugee

Procedia PDF Downloads 282
619 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 313
618 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance

Authors: Benmalek M. Larbi, R. Harbi, S. Boukor

Abstract:

This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.

Keywords: clay brick waste, mortar, properties, quarry sand

Procedia PDF Downloads 245
617 Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven

Authors: Uzu-Kuei Hsu, Keh-Chin Chang, Joo-Guan Hang, Chang-Hsien Tai

Abstract:

Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process.

Keywords: coke oven, burning off, carbon deposits, carbon combustion, CFD

Procedia PDF Downloads 683
616 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading

Authors: Peyman Aela, Lu Zong, Guoqing Jing

Abstract:

Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.

Keywords: ballast, contact model, cyclic loading, DEM

Procedia PDF Downloads 181
615 Practical Challenges of Tunable Parameters in Matlab/Simulink Code Generation

Authors: Ebrahim Shayesteh, Nikolaos Styliaras, Alin George Raducu, Ozan Sahin, Daniel Pombo VáZquez, Jonas Funkquist, Sotirios Thanopoulos

Abstract:

One of the important requirements in many code generation projects is defining some of the model parameters tunable. This helps to update the model parameters without performing the code generation again. This paper studies the concept of embedded code generation by MATLAB/Simulink coder targeting the TwinCAT Simulink system. The generated runtime modules are then tested and deployed to the TwinCAT 3 engineering environment. However, defining the parameters tunable in MATLAB/Simulink code generation targeting TwinCAT is not very straightforward. This paper focuses on this subject and reviews some of the techniques tested here to make the parameters tunable in generated runtime modules. Three techniques are proposed for this purpose, including normal tunable parameters, callback functions, and mask subsystems. Moreover, some test Simulink models are developed and used to evaluate the results of proposed approaches. A brief summary of the study results is presented in the following. First of all, the parameters defined tunable and used in defining the values of other Simulink elements (e.g., gain value of a gain block) could be changed after the code generation and this value updating will affect the values of all elements defined based on the values of the tunable parameter. For instance, if parameter K=1 is defined as a tunable parameter in the code generation process and this parameter is used to gain a gain block in Simulink, the gain value for the gain block is equal to 1 in the gain block TwinCAT environment after the code generation. But, the value of K can be changed to a new value (e.g., K=2) in TwinCAT (without doing any new code generation in MATLAB). Then, the gain value of the gain block will change to 2. Secondly, adding a callback function in the form of “pre-load function,” “post-load function,” “start function,” and will not help to make the parameters tunable without performing a new code generation. This means that any MATLAB files should be run before performing the code generation. The parameters defined/calculated in this file will be used as fixed values in the generated code. Thus, adding these files as callback functions to the Simulink model will not make these parameters flexible since the MATLAB files will not be attached to the generated code. Therefore, to change the parameters defined/calculated in these files, the code generation should be done again. However, adding these files as callback functions forces MATLAB to run them before the code generation, and there is no need to define the parameters mentioned in these files separately. Finally, using a tunable parameter in defining/calculating the values of other parameters through the mask is an efficient method to change the value of the latter parameters after the code generation. For instance, if tunable parameter K is used in calculating the value of two other parameters K1 and K2 and, after the code generation, the value of K is updated in TwinCAT environment, the value of parameters K1 and K2 will also be updated (without any new code generation).

Keywords: code generation, MATLAB, tunable parameters, TwinCAT

Procedia PDF Downloads 219
614 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 391
613 Modelling and Analysis of Shear Banding in Flow of Complex Fluids

Authors: T. Chinyoka

Abstract:

We present the Johnson-Segalman constitutive model to capture certain fluid flow phenomena that has been experimentally observed in the flow of complex polymeric fluids. In particular, experimentally observed phenomena such as shear banding, spurt and slip are explored and/or explained in terms of the non-monotonic shear-stress versus shear-rate relationships. We also explore the effects of the inclusion of physical flow aspects such as wall porosity on shear banding. We similarly also explore the effects of the inclusion of mathematical modelling aspects such as stress diffusion into the stress constitutive models in order to predict shear-stress (or shear-rate) paths. We employ semi-implicit finite difference methods for all the computational solution procedures.

Keywords: Johnson-Segalman model, diffusive Johnson-Segalman model, shear banding, finite difference methods, complex fluid flow

Procedia PDF Downloads 359
612 Comprehensive Ultrasonography During Low-flow Bypass in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion

Authors: G. K. Guseynova, V. V. Krylov, L. T. Khamidova, N. A. Polunina, V. A. Lukyanchikov

Abstract:

The report presents complex ultrasound diagnostics in patients with symptomatic steno-occlusive lesions of extra- and intracranial branches of brachiocephalic arteries (BCA). The tasks and possibilities of ultrasound diagnostics at different stages of treatment of patients with symptomatic occlusion of internal carotid artery (ICA) are covered in detail; qualitative and quantitative characteristics of blood flow; parameters of the wall and lumen of the main arteries of the head; methods of ultrasound examination of indirect assessment of the functional status are presented. Special attention is paid to the description of indicators that are predictors of the consistency of formed extra-intracranial low-flow shunts, examples of functioning and failed anastomoses are analyzed.

Keywords: CBF, cerebral blood flow; CTA, external carotid artery; ICA, internal carotid artery; MCA, middle cerebral artery; MRA, magnetic resonance angiography; OEF, oxygen extraction fraction; TIA, transient ischaemic attack, ultrasound, low-flow bypass, anastomoses

Procedia PDF Downloads 28
611 Seismic Assessment of Old Existing RC Buildings In Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, Nour M. Fayed, Ayman M. Ismail

Abstract:

Early, pre-code, reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Among these, existing old RC building in Madinah is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After, updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP 2000 software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis ambient vibration, modal update

Procedia PDF Downloads 490
610 The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel

Authors: Soroush Maddah, Houra Asgarian, Mahdi Navidbakhsh

Abstract:

In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses.

Keywords: arbitrary Lagrangian-Eulerian, Atenolol, fluid structure interaction, micropolar fluid, pulsatile blood flow

Procedia PDF Downloads 415
609 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 327
608 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand

Authors: Won Taek Oh, Adin Richard

Abstract:

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.

Keywords: critical height, matric suction, unsaturated soil, unsupported trench

Procedia PDF Downloads 116
607 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator

Authors: Aimad Koulali

Abstract:

Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.

Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow

Procedia PDF Downloads 93
606 The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows

Authors: Chia-Yung Chou, Che-Chuan Cheng, Chin Chi Hsu, Chun-Hui Wu

Abstract:

This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field.

Keywords: hydrophobic, boundary layer, slip length, friction

Procedia PDF Downloads 139
605 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 363
604 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 303
603 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme

Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey

Abstract:

In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.

Keywords: e-voting preparation stage, blind signature protocol, Nonce based authentication scheme, Kerberos Authentication Protocol, pseudo voter identity scheme PVID

Procedia PDF Downloads 284
602 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels

Authors: R. Chouatah, E. G. Filali, B. Zouzou

Abstract:

It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.

Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness

Procedia PDF Downloads 338
601 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow

Authors: Yang Luo, Chang Nyung Kim

Abstract:

This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.

Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic

Procedia PDF Downloads 276
600 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 228