Search results for: maximum force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6155

Search results for: maximum force

5435 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 534
5434 Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls

Authors: M. M. Bagheri, G. Doudak, M. Gong

Abstract:

The in-plane rigidity of light frame diaphragms has been investigated by researchers due to the importance of this subsystem regarding lateral force distribution between the lateral force resisting system (LFRS). Where research has lacked is in evaluating the impact of out-of-plane raigidity of the diaphragm on the deflection of shear walls. This study aims at investigating the effect of the diaphragm on the behavior of wood light-frame shear walls, in particular its out-of-plane rigidity was simulated by modeling the floors as beam. The out of plane stiffness of the diaphragm was investigated for idealized (infinitely stiff or flexible) as well as “realistic”. The results showed reductions in the shear wall deflection in the magnitude of approximately 80% considering the out of plane rigidity of the diaphragm. It was also concluded that considering conservative estimates of out-of-plane stiffness might lead to a very significant reduction in deflection and that assuming the floor diaphragm to be infinitely rigid out of plan seems to be reasonable. For diaphragms supported on multiple panels, further reduction in the deflection was observed. More work, particularly at the experimental level, is needed to verify the finding obtained in the numerical investigation related to the effect of out of plane diaphragm stiffness.

Keywords: finite element analysis, lateral deflection, out-of-plane stiffness of the diaphragm, wood light-frame shear wall

Procedia PDF Downloads 182
5433 Improvement Perturb and Observe for a Fast Response MPPT Applied to Photovoltaic Panel

Authors: Labar Hocine, Kelaiaia Mounia Samira, Mesbah Tarek, Kelaiaia Samia

Abstract:

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point(MPP) which depends on panels temperature and on irradiance conditions. The main drawback of P&O is that, the operating point oscillates around the MPP giving rise to the waste of some amount of available energy; moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper, it is shown that in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such initial set parameters is also carried out. The fast convergence of the proposal is proven.

Keywords: P&O, Taylor’s series, MPPT, photovoltaic panel

Procedia PDF Downloads 587
5432 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: buoyancy force, friction force, finite volume method, transient natural convection

Procedia PDF Downloads 196
5431 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 251
5430 Initial Settlers and Gender Norms: Evidence From the United States

Authors: Joanne Haddad

Abstract:

The distinctive traits of early settlers at initial stages of institutional development may be crucial for cultural formation. In 1973, the cultural geographer Wilbur Zelinsky postulated this in his doctrine of “first effective settlement”. There is however little empirical evidence supporting the role of early settlers in shaping culture over the long run. This paper tests this hypothesis by relating early settlers’ culture to within state variation in gender norms in the United States. Settlers’ culture is captured using past female labor force participation, women’s suffrage, and financial rights at their place of origin. The paper documents the distinctive characteristics of settlers’ populations and provide suggestive evidence in support of the transmission of gender norms across space and time. Results from this analysis show that women’s labor supply is higher, in both the short and long run, in U.S. counties that historically hosted a larger settler population originating from places with favorable gender attitudes. Findings from this study shed new light on the importance of the characteristics of immigrants and their place of origin for cultural formation in hosting societies.

Keywords: female labor force participation, settlers, gender norms, cultural formation.

Procedia PDF Downloads 109
5429 Polyethylenimine-Ethoxylated Dual Interfacial Layers for High-Efficient Quantum Dot Light-Emitting Diodes

Authors: Woosuk Lee

Abstract:

We controlled the electron injection rate in inverted quantum dot light-emitting diode (QLED) by inserting PEIE layer between ZnO electron transport layer(ETL) and quantum dots(QDs) layer and successfully demonstrated high efficiency of QLEDs. The inverted QLED has the layer structure of ITO(cathode)/ ZnO NPs/PEIE/QDs/PEIE/P-TPD/MoO3/Al(anode). The PEIE between poly-TPD hole transport layer (HTL) and quantum dot emitting layer protects QD EML during HTL coating process and improves the surface morphology. In addition, the hole injection barrier is reduced by upshifting the valence band maximum (VBM) of QDs. An additional layer of PEIE was introduced between ZnO and QD to balance charge within QD emissive layer in device, which serves as an effective electron blocking layer without changing device operating condition such as turn-on voltage and emissive spectra. As a result, the optimized QLED with 5nm PEIE shows a ~36% improved current efficiency and external quantum efficiency (EQE) compared to the QLED without PEIE.(maximum current efficiency, and EQE are achieved 70cd/A and 17.3%, respectively). In particular, the maximum brightness of the optimized QLED dramatically improved by a factor of 2.3 relative to the QLED without PEIE. The main reasons for these QLED performance improvement are due to the suppressing the leakage current across the device and well confined exciton by inserting PEIE layers.

Keywords: quantum dot light-emitting diodes, interfacial layer, charge-injection balance, suppressing QD charging

Procedia PDF Downloads 183
5428 Community Based Tourism and Development in Third World Countries: The Case of the Bamileke Region of Cameroon

Authors: Ngono Mindzeng Terencia

Abstract:

Community based tourism, as a sustainable tourism approach, has been adopted as a tool for development among local communities in third world countries with income generation as the main driver. However, an analysis of community based tourism and development brings to light another driving force which is paramount to development strategies in the difficult conditions of third world countries: this driving force is “place revitalization”. This paper seeks to assess the relevance of “place revitalization” to the enhancement of development within the challenging context of developing countries. The research provides a community based tourism model to development in third world countries through a three step process based on awareness, mentoring and empowerment at the local level. It also tries to examine how effectively this model can address the development problems faced by the local communities of third world countries. The case study for this research is the Bamiléké region of Cameroon, the breeding ground of community based tourism initiatives and a region facing the difficulties of third world countries that are great impediments to community based tourism.

Keywords: awareness, empowerment, local communities, mentoring, place revitalization, third world countries

Procedia PDF Downloads 318
5427 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell

Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana

Abstract:

Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.

Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production

Procedia PDF Downloads 178
5426 Security as Human Value: Issue of Human Rights in Indian Sub-Continental Operations

Authors: Pratyush Vatsala, Sanjay Ahuja

Abstract:

The national security and human rights are related terms as there is nothing like absolute security or absolute human right. If we are committed to security, human right is a problem and also a solution, and if we deliberate on human rights, security is a problem but also part of the solution. Ultimately, we have to maintain a balance between the two co-related terms. As more and more armed forces are being deployed by the government within the nation for maintaining peace and security, using force against its own citizen, the search for a judicious balance between intent and action needs to be emphasized. Notwithstanding that a nation state needs complete political independence; the search for security is a driving force behind unquestioned sovereignty. If security is a human value, it overlaps the value of freedom, order, and solidarity. Now, the question needs to be explored, to what extent human rights can be compromised in the name of security in Kashmir or Mizoram like places. The present study aims to explore the issue of maintaining a balance between the use of power and good governance as human rights, providing security as a human value. This paper has been prepared with an aim of strengthening the understanding of the complex and multifaceted relationship between human rights and security forces operating for conflict management and identifies some of the critical human rights issues raised in the context of security forces operations highlighting the relevant human rights principles and standards in which Security as human value be respected at all times and in particular in the context of security forces operations in India.

Keywords: Kashmir, Mizoram, security, value, human right

Procedia PDF Downloads 279
5425 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: AFPM, CFD, magnet parameters, stator heat transfer

Procedia PDF Downloads 250
5424 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e.less than 8seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the systemopening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used,shows significant improvement over the old ones.

Keywords: aircraft door damper, bypass valve, emergency power assist system, hydraulic damper, oil viscosity

Procedia PDF Downloads 423
5423 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications

Authors: Yaw-Ling Lin

Abstract:

A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.

Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences

Procedia PDF Downloads 167
5422 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol

Procedia PDF Downloads 353
5421 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys

Authors: Surjit Angra, Pooja Rani, Vinod Kumar

Abstract:

In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.

Keywords: hydro-turbine, spiral casing, stay ring, structural analysis

Procedia PDF Downloads 516
5420 On the Effects of External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). In this work, we present the effects of the external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of the external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 372
5419 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy

Authors: Jemal Ebrahim Dessie, Lukács Zsolt

Abstract:

High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.

Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper

Procedia PDF Downloads 100
5418 Effects of Soil Erosion on Vegetation Development

Authors: Josephine Wanja Nyatia

Abstract:

The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems

Keywords: soil erosion, vegetation, development, seed availability

Procedia PDF Downloads 85
5417 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 384
5416 Rethinking Military Aid to Civil Authorities for Internal Security Operations: A Sustainable Solution to Rebuilding Civil Military Relations in Nigeria

Authors: Emmanuela Ngozi Maduka

Abstract:

In Nigeria, civil-military relations is at its lowest point as a result of the challenges emanating from incessant initiation of military aid to civil authorities (MACA) for internal security operations. This paper is concerned with the question whether it is appropriate for the military to handle internal security crisis with exception to terrorism and armed militia. It analyses the legal framework for MACA in internal security operations which appear to be in contradiction with military tactical and equipment training. The paper argues that the expectation that transitional re-training of the military for internal security operations will reconcile these inconsistencies specifically on the issue of use of force is not practicable and will always pose challenges for both the military and the citizens. Accordingly, this paper adopts a socio-legal methodology for better clarity on the interactions between the legal framework on MACA and military internal security operations. The paper also identifies the lack of effective and proficient paramilitary within the security design of Nigeria as the key issue which results in incessant initiation of MACA and advocates for the establishment of an effective and proficient paramilitary to effectively handle internal security crisis within Nigeria.

Keywords: civil-military relations, MACA, military training, operational challenges, paramilitary, use of force

Procedia PDF Downloads 143
5415 Bioremediation Effect on Shear Strength of Contaminated Soils

Authors: Samira Abbaspour

Abstract:

Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase.

Keywords: contamination, shear strength, compaction, oil contamination

Procedia PDF Downloads 184
5414 Analysis of Brain Activities due to Differences in Running Shoe Properties

Authors: Kei Okubo, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe

Abstract:

Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.

Keywords: brain activities, NIRS, PASAT, running shoes

Procedia PDF Downloads 373
5413 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper

Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam

Abstract:

Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.

Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook

Procedia PDF Downloads 96
5412 Investigating the Dynamic Plantar Pressure Distribution in Individuals with Multiple Sclerosis

Authors: Hilal Keklicek, Baris Cetin, Yeliz Salci, Ayla Fil, Umut Altinkaynak, Kadriye Armutlu

Abstract:

Objectives and Goals: Spasticity is a common symptom characterized with a velocity dependent increase in tonic stretch reflexes (muscle tone) in patient with multiple sclerosis (MS). Hypertonic muscles affect the normal plantigrade contact by disturbing accommodation of foot to the ground while walking. It is important to know the differences between healthy and neurologic foot features for management of spasticity related deformities and/or determination of rehabilitation purposes and contents. This study was planned with the aim of investigating the dynamic plantar pressure distribution in individuals with MS and determining the differences between healthy individuals (HI). Methods: Fifty-five individuals with MS (108 foot with spasticity according to Modified Ashworth Scale) and 20 HI (40 foot) were the participants of the study. The dynamic pedobarograph was utilized for evaluation of dynamic loading parameters. Participants were informed to walk at their self-selected speed for seven times to eliminate learning effect. The parameters were divided into 2 categories including; maximum loading pressure (N/cm2) and time of maximum pressure (ms) were collected from heal medial, heal lateral, mid foot, heads of first, second, third, fourth and fifth metatarsal bones. Results: There were differences between the groups in maximum loading pressure of heal medial (p < .001), heal lateral (p < .001), midfoot (p=.041) and 5th metatarsal areas (p=.036). Also, there were differences between the groups the time of maximum pressure of all metatarsal areas, midfoot, heal medial and heal lateral (p < .001) in favor of HI. Conclusions: The study provided basic data about foot pressure distribution in individuals with MS. Results of the study primarily showed that spasticity of lower extremity muscle disrupted the posteromedial foot loading. Secondarily, according to the study result, spasticity lead to inappropriate timing during load transfer from hind foot to forefoot.

Keywords: multiple sclerosis, plantar pressure distribution, gait, norm values

Procedia PDF Downloads 320
5411 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 530
5410 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 474
5409 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process

Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı

Abstract:

Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.

Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter

Procedia PDF Downloads 431
5408 Variability of L-Band GPS Scintillation over Auroral Region, Maitri, Antarctica

Authors: Prakash Khatarkar, P. A. Khan, Shweta Mukherjee, Roshni Atulkar, P. K. Purohit, A. K. Gwal

Abstract:

We have investigated the occurrence characteristics of ionospheric scintillations, using dual frequency GPS, installed and operated at Indian scientific base station Maitri (71.45S and 11.45E), Antarctica, during December 2009 to December 2010. The scintillation morphology is described in terms of S4 Index. The scintillations are classified into four main categories as Weak (0.21.0). From the analysis we found that the percentage of weak, moderate, strong and saturated scintillations were 96%, 80%, 58% and 7%, respectively. The maximum percentage of all types of scintillation was observed in the summer season, followed by equinox and the least in winter season. As the year 2010 was a low solar activity period, consequently the maximum occurrences of scintillations were those of weak and moderate and only four cases of saturated scintillation were observed.

Keywords: L-band scintillation, GPS, auroral region, low solar activity

Procedia PDF Downloads 648
5407 Platelet Indices among the Cases of Vivax Malaria

Authors: Mirza Sultan Ahmad, Mubashra Ahmad, Ramlah Mehmood, Nazia Mahboob, Waqar Nasir

Abstract:

Objective: To ascertain the prevalence of thrombocytopenia and study changes in MPV and PDW among cases of vivax malaria. Design: Descriptive analytic study. Place and duration of study: Department of pediatrics, Fazle Omar Hospital, from January to December 2012. Methodology: All patients from birth to 16 years age, who presented in Fazle- Omar hospital, Rabwah from January to December 2012 were included in this study. Hundred patients with other febrile illnesses were taken as control. Full blood counts were checked by Madonic CA 620 analyzer. Name, age, sex, weight, platelet counts. MPV, PDW, any evidence of bleeding, outcome of cases included in this study and taken as control were recorded on data sheets. Results: One hundred and forty-two patients were included in this study. There was no incidence of death or active bleeding. Median platelet count was 109000/mm3. Thrombocytopenia was present in 108 (76.1%) patients. Severe thrombocytopenia was present in 10(7%) patients. Minimum count was 27000/mm3 and maximum was 341000/mm3. Platelet counts of control group was significantly more as compared with study group.(p<.001) Median MPV was 8.70. Minimum value was 6.40 and maximum was 11.90. MPV of study group was significantly more than control group.(p<.001) Median PDW was 11.30. Minimum value was 8.5 and maximum was 16.70. There was no difference between PDW of study and control groups (p=0.246). Conclusions: Thrombocytopenia is a common complication among pediatric cases of vivax malaria. MPV of cases of vivax malaria is higher than control group.

Keywords: malaria vivax, platelet, mean platelet volume, thrombocytopenia

Procedia PDF Downloads 399
5406 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 190