Search results for: horizontal stiffness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1504

Search results for: horizontal stiffness

784 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

Authors: Seyed Abolhasan Naeini, Ali Namaei

Abstract:

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Keywords: vertical drain, prefabricated, consolidation, embankment

Procedia PDF Downloads 137
783 Analysis of Different Resins in Web-to-Flange Joints

Authors: W. F. Ribeiro, J. L. N. Góes

Abstract:

The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.

Keywords: engineered wood products, structural resin, wood i-joist, Pinus taeda

Procedia PDF Downloads 263
782 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems

Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell

Abstract:

This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.

Keywords: cold formed steel joists, composite action, flooring systems, shear connection

Procedia PDF Downloads 117
781 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System

Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee

Abstract:

Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.

Keywords: rotating shaft, flexible blades, centrifugal stiffness, stability

Procedia PDF Downloads 247
780 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall

Procedia PDF Downloads 379
779 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 297
778 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure

Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail

Abstract:

We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.

Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon

Procedia PDF Downloads 527
777 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.

Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software

Procedia PDF Downloads 395
776 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 90
775 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.

Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy

Procedia PDF Downloads 147
774 Characterizing the Geometry of Envy Human Behaviour Using Game Theory Model with Two Types of Homogeneous Players

Authors: A. S. Mousa, R. I. Rajab, A. A. Pinto

Abstract:

An envy behavioral game theoretical model with two types of homogeneous players is considered in this paper. The strategy space of each type of players is a discrete set with only two alternatives. The preferences of each type of players is given by a discrete utility function. All envy strategies that form Nash equilibria and the corresponding envy Nash domains for each type of players have been characterized. We use geometry to construct two dimensional envy tilings where the horizontal axis reflects the preference for players of type one, while the vertical axis reflects the preference for the players of type two. The influence of the envy behavior parameters on the Cartesian position of the equilibria has been studied, and in each envy tiling we determine the envy Nash equilibria. We observe that there are 1024 combinatorial classes of envy tilings generated from envy chromosomes: 256 of them are being structurally stable while 768 are with bifurcation. Finally, some conditions for the disparate envy Nash equilibria are stated.

Keywords: game theory, Nash equilibrium, envy Nash behavior, geometric tilings, bifurcation thresholds

Procedia PDF Downloads 203
773 Review Paper on Structural Behaviour of Industrial Pallet Rack with Braced and Unbraced Frames

Authors: Sourabh R. Dinde, Rajshekar S. Talikoti

Abstract:

According to the structural point of view Industrial Pallet rack structure can be considered typical steel framed structure. This work presents a general analysis of an industrial pallet rack structure, evaluating the influence of each of the components on the global stability. An analytical study for the sensitivity of pallet rack configuration in linear static equivalent lateral loads. The aim is to braced/unbraced frames were design and their analytical models are to be built in software. The finite element analysis is used to determine axial forces in beam and column, maximum storey displacement and buckling loads on braced/unbraced pallet rack structure. Bracing systems are mostly provided to enhance the stiffness factor of the structures with the seismic loads. Unbraced systems have mostly translational modes of failure and are very flexible due to excessive loads.

Keywords: buckling capacity, cold formed steel, finite element analysis, pallets Rrack, seismic design

Procedia PDF Downloads 309
772 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs

Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu

Abstract:

Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.

Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy

Procedia PDF Downloads 376
771 Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement

Authors: Chamroeun Chhorn, Seong Jae Hong, Yoon-Ho Cho, Hyun Jong Lee, Seung Woo Lee

Abstract:

The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement.

Keywords: roller-compacted concrete, consistency, compactibility, poly naphthalene sulfonate superplasticizer

Procedia PDF Downloads 230
770 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 464
769 Recovery of Petroleum Reservoir by Waterflooding Technique

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery.

Keywords: Buckley-Leverett theory, waterflooding technique, petroleum engineering, immiscible displacement

Procedia PDF Downloads 236
768 The Cognitive Perspective on Arabic Spatial Preposition ‘Ala

Authors: Zaqiatul Mardiah, Afdol Tharik Wastono, Abdul Muta'ali

Abstract:

In general, the Arabic preposition ‘ala encodes the sense of UP-DOWN schema. However, the use of the preposition ‘ala can has many extended schemas that still have relation to its primary sense. In this paper, we show how the framework of cognitive linguistics (CL) based on image schemas can be applied to analyze the spatial semantic of the use of preposition ‘ala in the horizontal and vertical axes. The preposition ‘ala is usually used in the locative sense in which one physical entity is UP-DOWN relation to another physical entity. In spite of that, the cognitive analysis of ‘ala justifies the use of this preposition in many situations to seemingly encode non-up down-related spatial relations, and non-physical relation. This uncovers some of the unsolved issues concerning prepositions in general and the Arabic prepositions in particular the use of ‘ala as a sample. Using the Arabic corpus data, we reveal that in many cases and situations, the use of ‘ala is extended to depict relations other than the ones where the Trajector (TR) is actually in up-down relation to the Landmark (LM). The instances analyzed in this paper show that ‘ala encodes not only the spatial relations in which the TR and the LM are horizontally or vertically related to each other, but also non-spatial relations.

Keywords: image schema, preposition, spatial semantic, up-down relation

Procedia PDF Downloads 132
767 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 426
766 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 402
765 Double-Diffusive Natural Convection with Various Partially Heated and Salted Sources Arrangements in an Open Cavity

Authors: Norazam Arbin, Habibis Saleh, Ammar Alsabery, Ishak Hashim

Abstract:

Double-diffusive natural convection in an open top cavity with partial vertical heating and salting sources is investigated numerically. Different temperatures and concentrations are applied at the source location on the right and left walls while the other remains adiabatic except at the open top surface. Various combinations of sources arrangements are imposed at the vertical walls in order to observe the significant impact to the convection. An iterative finite different method is used to solve the dimensionless governing equations. The effects of Marangoni number and sources arrangements on the contours of streamlines, isotherms, and concentrations are visualized as the outcome of the numerical solutions. The average Nusselt and Sherwood number are presented for various sources arrangements. It is clearly observed that the sources arrangements gave major impact on the heat and mass transfer rates. A horizontal-like pattern is found for sources arrangements that near the top-free surface.

Keywords: double-diffusive, Marangoni effect, partial heating, salting

Procedia PDF Downloads 390
764 Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses

Authors: Ki-Yong Oh, Eunji Kwak, Due Su Son, Siheon Jung

Abstract:

A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell.

Keywords: force response, LiFePO₄ battery, strain response, stress response, swelling response

Procedia PDF Downloads 155
763 Buckling Analysis of Laminated Composite Plates with Central Holes

Authors: Pratyasha Patnaik, A. V. Asha

Abstract:

Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load

Keywords: buckling, composite plates, cut-out, stress

Procedia PDF Downloads 320
762 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 177
761 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 257
760 Hyperelastic Formulation for Orthotropic Materials

Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann

Abstract:

In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.

Keywords: finite strain, hyperelastic, invariants, orthotropic

Procedia PDF Downloads 422
759 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 295
758 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method

Procedia PDF Downloads 208
757 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer

Authors: Santhosh A. K.

Abstract:

This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.

Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM

Procedia PDF Downloads 179
756 A Comparative Study between Ionic Wind and Conventional Fan

Authors: J. R. Lee, E. V. Lau

Abstract:

Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan.

Keywords: conventional fan, heat transfer, ionic wind, wind profile

Procedia PDF Downloads 308
755 The Influence of the Form of Grain on the Mechanical Behaviour of Sand

Authors: Mohamed Boualem Salah

Abstract:

The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.

Keywords: angularity, eccentricity, shape particle, behavior of soil

Procedia PDF Downloads 400