Search results for: forest garden
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1092

Search results for: forest garden

372 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
371 Role of Community Forestry to Address Climate Change in Nepal

Authors: Laxmi Prasad Bhattarai

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: community forestry, climate change, global warming, adaptation, Nepal

Procedia PDF Downloads 306
370 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia

Authors: Bedilu Tafesse

Abstract:

Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.

Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia

Procedia PDF Downloads 305
369 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents

Authors: Shahid-ul-Islam, Faqeer Mohammad

Abstract:

The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.

Keywords: annatto, antimicrobial agents, natural dyes, green textiles

Procedia PDF Downloads 318
368 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 508
367 Fostering Ties and Trusts through Social Interaction within Community Gardening

Authors: Shahida Mohd Sharif, Norsidah Ujang

Abstract:

Recent research has shown that many of the urban population in Kuala Lumpur, especially from the lower-income group, suffer from socio-psychological problems. They are reported as experiencing anxiety, depression, and stress, which is made worst by the recent COVID-19 pandemic. Much of the population was forced to observe the Movement Control Order (MCO), which is part of pandemic mitigation measures, pushing them to live in isolation as the new normal. The study finds the need to strategize for a better approach to help these people coping with the socio-psychological condition, especially the population from the lower-income group. In Kuala Lumpur, as part of the Local Agenda 21 programme, the Kuala Lumpur City Hall has introduced Green Initiative: Urban Farming, which among the approaches is the community garden. The local authority promotes the engagement to be capable of improving the social environment of the participants. Research has demonstrated that social interaction within community gardens can help the members improve their socio-psychological conditions. Therefore, the study explores the residents’ experience from low-cost flats participating in the community gardening initiative from a social attachment perspective. The study will utilise semi-structured interviews to collect the participants’ experience with community gardening and how the social interaction exchange between the members' forms and develop their ties and trust. For a context, the low-cost flats are part of the government social housing program (Program Perumahan Rakyat dan Perumahan Awam). Meanwhile, the community gardening initiative (Projek Kebun Kejiranan Bandar LA21 KL) is part of the local authority initiative to address the participants’ social, environmental, and economic issues. The study will conduct thematic analysis on the collected data and use the ATLAS.ti software for data organization and management purposes. The findings could help other researchers and stakeholders understand the social interaction experience within community gardens and its relation to ties and trusts. The findings could shed some light on how the participants could improve their social environment, and its report could provide the local authority with evidence-based documentation.

Keywords: community gardening participation, lower-income population, social attachment, social interaction

Procedia PDF Downloads 138
366 Restoring, Revitalizing and Recovering Brazilian Rivers: Application of the Concept to Small Basins in the City of São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

Watercourses in Brazilian urban areas are constantly being degraded due to the unplanned use of the urban space; however, due to the different contexts of land use and occupation in the river watersheds, different intervention strategies are required to requalify them. When it comes to requalifying watercourses, we can list three main techniques to fulfill this purpose: restoration, revitalization and recovery; each one being indicated for specific contexts of land use and occupation in the basin. In this study, it was demonstrated that the application of these three techniques to three small basins in São Paulo city, listing the aspects involved in each of the contexts and techniques of requalification. For a protected watercourse within a forest park, renaturalization was proposed, where the watercourse is preserved in a state closer to the natural one. For a watercourse in an urban context that still preserves open spaces for its maintenance as a landscape element, an intervention was proposed following the principles of revitalization, integrating the watercourse with the landscape and the population. In the case of a watercourse in a harder context, only recovery was proposed, since the watercourse is found under the road system, which makes it difficult to integrate it into the landscape.

Keywords: sustainable drainage, river restoration, river revitalization, river recovery

Procedia PDF Downloads 158
365 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
364 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand

Authors: Yosiya Chanta, Jantrararuk Tovaranont

Abstract:

Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.

Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change

Procedia PDF Downloads 98
363 Water Stress Response Profiling of Nigerian Bambara Groundnut (Vigna subterranea L. Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using SSR Markers

Authors: Dorcas Ropo Abejide, Olamide Ahmed Falusi, Oladipupo Abdulazeez Yusuf Daudu, Bolaji Zuluqurineen Salihu, Muhammad Liman Muhammad

Abstract:

This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies were carried out in the botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the International Institute of Tropical Agriculture (IITA) Ibadan in order to characterize ten selected accessions comprising the seven most drought tolerant and three most susceptible accessions from the 24 accessions evaluated. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant, seed yield, etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. SSR markers MBamCO₃₃, Primer 65, and G358B2-D15 each detected 4 allelles, while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of polymorpic information content was 0.6997, implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The UPGMA dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought-tolerant accessions were grouped together, and the 5th and 6th most drought-tolerant accessions were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes, or have a common origin. The degree of genetic variants obtained from this profiling could be useful in Bambara groundnut breeding for drought tolerance. The identified drought tolerant Bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of Bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.

Keywords: Bambara groundnut, genetic diversity, germplasm, SSR markers, water stress

Procedia PDF Downloads 61
362 The Role of Community Forestry to Combat Climate Change Impacts in Nepal

Authors: Ravi Kumar Pandit

Abstract:

Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is growing a global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore the local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.

Keywords: climate change, community forestry, global warming, adaptation in Nepal

Procedia PDF Downloads 254
361 Ecosystem Post-Wildfires Effects of Thasos Island

Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes

Abstract:

Fires are one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperature regimes results on the increased levels of the intensity, frequency and the spread of fires inducing obstacles for the natural regeneration. Thasos Island is one of the Greek islands that have experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense flooding events. That also resulted to serious economic problems to the local communities and the ability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on the hydrology and soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.

Keywords: erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires

Procedia PDF Downloads 326
360 'The Cultural Sanctuary of Black Kafirs' Cultural and Tourism Promotion of Kalash Culture

Authors: Jamal Ahmad

Abstract:

The Sanctuary of the Kafirs is a sanctified place for the people of Kalash which contain the sacred remains of their culture. The existence of the cultural Sanctuary is not limited up to boundaries of culture but its canopy also contain the spiritual attachments in terms of religion, rituals, introspections, myths, customs and living standards. Culture is the manifestation of the human intellectual achievement in a qualitative phenomenon of a place. The ethnic people of Hindu Kush (Kalash) are an indigenous group that practices Animism. They believe in Animistic Symbology i-e the material universe has high spiritual power. The Animism in their living standard comes from the high spiritualized and sacred sacrifices of animals goats, sheep etc. in their festivals which is the symbol of purity. Similarly certain cultural and religious phenomena make its behavior, its living pattern, its fairy tales, its birth and even its death unique. The scattered and the vanishing fragments of the Kafiristan, demands the phenomenal solution which molds all these factors into preserving standards. It demands a place of belief where, their unique culture, religion, festivals and life style make a sincere base for future existence, and such phenomena of place will consciously or unconsciously molds these ideas into building fabric. The Sanctuary contains ancient vandalized cemetery, the qaliq* the mujnatikeen*, the jastaks*, dewadoor* an amphitheater for dancing and ritual performances, an herbal garden and a profile sanctuary of the blood line of Kalash. The Case-Analysis provokes a new architecture of place, as the Phenomenological Architecture, which requires a place and phenomenon to take place. The Animistic Symbology and Phenomenology both are the part of their life but needs to reveal its hidden meaning and existence i-e (The Balamain, the alpine meadows, the sacred river). The Architectural work is strengthened by the philosophies of Animism and Phenomenology which make it easy to understand. The Scope of work is to reincarnate the ethical boundaries between the neighboring tribes and the Kafirs, by a series of dwellings, cultural and religious communal buildings and spaces, gardens and streets layout under the umbrella of ethical beliefs of Kalash community. So we conclude to build the Sanctuary of the Kafirs, in Bamboret valley of Kalash.

Keywords: Qaliq, Mujnatikeen, Dewadoor, Jastaks

Procedia PDF Downloads 334
359 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 74
358 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission

Authors: Bo Wang

Abstract:

As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.

Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement

Procedia PDF Downloads 345
357 The Sustainability of Farm Forestry Management in Bulukumba Regency, South Sulawesi, Indonesia

Authors: Nuraeni, Suryanti, Saida, Annas Boceng

Abstract:

Farm forestry is a forest where farmers or landowners do cultivation and farming activities on their land. This study aims to determine the dimensions of sustainable development of farm forestry and to analyze the leverage factors to improve the sustainability status of farm forestry management in Bulukumba Regency. This research was conducted in Kajang District, Bulukumba Regency. The analysis of the sustainability of farm forestry management applied Multi-Dimensional Scaling (MDS), a modification of the Rapid Appraisal of The Status of Farming (RAPFARM). The index value of farm forestry sustainability was by 62.01% for ecological dimension, 51.54% for economic dimension, 61.00% for the social and cultural dimension, and 63.24% for legal and institutional dimension with sustainable enough category status. Meanwhile, the index value for the technology and infrastructure was by 47.16% of less sustainable category status. The result of leverage analysis of attributes for the dimensions of ecological, economic, social and cultural, legal and institutional as well as infrastructure and technology afforded twenty-two (22) leverage sensitive factors that influence the sustainability of farm forestry.

Keywords: farm forestry, South Sulawesi, management, sustainability

Procedia PDF Downloads 369
356 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 376
355 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 149
354 Monitoring the Vegetation Cover Dynamics of the African Great Green Wall in Yobe State Nigeria

Authors: Isa Muhammad Zumo

Abstract:

The African Great Green Wall (GGW) is a significant initiative in northern Nigeria because it promotes land restoration and conservation utilizing both commercial and species of forest trees while also helping to mitigate desertification and hazards from the sand dunes and shifting Sahara deserts. Conflicts and weather, however, pose a significant danger to the achievement of these goals. The scientific method for monitoring the vegetation dynamics since inception has not received the required attention, despite the African Development Bank (ADB)'s help in funding the project and its integration into the state's development plans for GGW initiatives. This study will monitor the changes in the vegetation cover of the great green wall within Yobe State Nigeria from 2014 to 2023. The vegetation dynamics will be monitored using Landsat 8 Operational Land Imager (OLI) for 6 years at 2 years intervals. The result will show the fluctuations in the vegetation cover density within the period of study. This will guide the design and implementation of policies of the GGW in achieving its objectives. The result can also contribute to the realization of Sustainable Development Goal (SDG) Target 13.2: Integrate climate change measures into national policies, strategies, and planning.

Keywords: monitoring, green wall, Landsat 8, Nigeria

Procedia PDF Downloads 87
353 Comparative Therapeutic Potential of 'Green Synthesized' Antimicrobials against Scalp Infections

Authors: D. Desai, J.Dixon, N. Jain, M. Datta

Abstract:

Microbial infections of scalp consist of symptomatic appearances associated with seborrhoeic dermatitis, folliculitis, furuncles, carbuncles and ringworm. The main causative organisms in these scalp-based infections are bacteria like S. aureus, P. aeruginosa and a fungus M. Furfur. Allopathic treatment of these infections is available and efficient, but occasionally, topical applications have been found to cause side effects. India is known as the botanical garden of the world and considered as the epicentre for utilization of traditional drugs. Many treatments based on herb extracts are commonly used in India. It has been observed treatment with ethnomedicines requires a higher dosage and greater time period. Additionally, repeated applications are required to obtain the full efficacy of the treatment. An attempt has been made to imbibe the traditional knowledge with nanotechnology to generate a proficient therapeutic against scalp infections. We have imbibed metallic nanoparticles with extracts from traditional medicines and propose to formulate an antimicrobial hair massager. Four commonly used herbs for treatment against scalp disorders like Zingiber officinale (ginger), Allium sativum (garlic), Azadirachta indica (neem) leaves and Citrus limon (lemon) peel was taken. 30 gms of dried homogenized powder was obtained and processed for obtaining the aqueous and ethanolic extract by soxhlet apparatus. The extract was dried and reconstituted to obtain working solution of 1mg/ml. Phytochemical analysis for the obtained extract was done. Synthesis of nanoparticles was mediated by incubating 1mM silver nitrate with extracts of various herbs to obtain silver nanoparticles. The formation of the silver nanoparticles (AgNPs) was monitored using UV-Vis spectroscopy. The AgNPs thus obtained were centrifuged and dried. The AgNPs thus formed were characterized by X Ray Diffraction, scanning electron microscopy and transmission electron microscopy. The size of the AgNPs varied from 10-20 nm and was spherical in shape. P. aeruginosa was plated on nutrient agar and comparative antibacterial activity was tested. Comparative antimicrobial potential was calculated for the extracts and the corresponding nanoconstructs. It was found AgNPs were more efficient than their aqueous and ethanolic counterparts except in the ase of C. limon. Statistical analysis was performed to validate the results obtained.

Keywords: ethnomedicine, nanoconstructs, scalp infections, Zingiber officinale

Procedia PDF Downloads 370
352 Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China

Authors: Zhang Hui, Wu Caiqiu, Yuan Xuyin, Qiu Jie, Zhang Hanpei

Abstract:

The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway.

Keywords: heavy metal contamination, roadside, highway, Nemerow Pollution Index

Procedia PDF Downloads 267
351 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 144
350 Application of Natural Dyes on Polyester and Polyester-Cellulosic Blended Fabrics

Authors: Deepali Rastogi, Akanksha Rastogi

Abstract:

Comfort and safety are two essential factors in a newborn’s clothing. Natural dyes are considered safe for infant clothes because they are non-toxic and have medicinal properties. Natural dyes are sensitive to pH and may show changes in hue under different pH conditions. Infant garments face treatments different than adult clothing, for instance, exposure to infant’s saliva, milk, and urine. The present study was designed to study the suitability of natural dyes for infant clothes. Cotton fabric was dyed using fifteen natural dyes and two mordants, alum, and ferrous sulphate. The dyed samples were assessed for colour fastness to washing, rubbing, perspiration and light. In addition, fastness to milk, saliva, and urine was also tested. Simulated solutions of saliva and urine were prepared for the study. For milk, one of the commercial formulations for infants was taken and used as per the directions. A wide gamut of colours was obtained after dyeing the cotton with different natural dyes and mordants. The colour strength of all the dyed samples was determined in terms of K/S values. Most of the ferrous sulphate mordanted dyes gave higher K/S values than alum mordanted samples. The wash fastness of dyed cotton fabrics ranged from 3/4 -5. Perspiration fastness test for the samples was done in both acidic and alkaline mediums. The ratings ranged from 3-5, with most of the dyes falling in the range of 4-5. The rubbing fastness of the dyed samples was tested in dry and wet conditions. The results showed excellent rub fastness ranging between 4-5. Light fastness was found to be good to moderate. The main food for infants is milk, and this becomes one of the main agents to spot infants' garments. All dyes showed excellent fastness properties against milk with a grey scale rating of 4-5. Fastness against saliva is recommended by various eco-labels, standards, and organizations for fabrics of infants or babies. The fastness of most of the dyes was found to be satisfactory against saliva. Infant garments get frequently soiled with urine. Most of the natural dyes on cotton fabric had good to excellent fastness to simulated urine. The grey scale ratings ranged from 3/4 – 5. Thus, it can be concluded that most of the natural dyes can be successfully used for infant wear and accessories and are fast to various liquids to which infant wear are exposed. Therefore, we can surround little ones with beautiful hues from nature's garden and clothe them in natural fibres dyed with natural dyes.

Keywords: fastness properties, infant wear, mordants, natural dyes

Procedia PDF Downloads 143
349 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018

Authors: Mário Ernesto Sitoe, Orlando Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: evasion and retention, cross-validation, bagging, stacking

Procedia PDF Downloads 85
348 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
347 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 197
346 Rejuvenating Cultural Energy: Forging Pathways to Alternative Ecological and Development Paradigms

Authors: Aldrin R. Logdat

Abstract:

The insights and wisdom of the Alangan Mangyans offer valuable guidance for developing alternative ecological and development frameworks. Their reverence for the sacredness of the land, rooted in their traditional cosmology, guides their harmonious relationship with nature. Through their practice of swidden farming, ecosystem preservation takes precedence as they carefully manage agricultural activities and allow for forest regeneration. This approach aligns with natural processes, reflecting their profound understanding of the natural world. Similar to early advocates like Aldo Leopold, the emphasis is on shifting our perception of land from a commodity to a community. The indigenous wisdom of the Alangan Mangyans provides practical and sustainable approaches to preserving the interdependence of the biotic community and ecosystems. By integrating their cultural heritage, we can transcend the prevailing anthropocentric mindset and foster a meaningful and sustainable connection with nature. The revitalization of cultural energy and the embrace of alternative frameworks require learning from indigenous peoples like the Alangan Mangyans, where reverence for the land and the recognition of the interconnectedness between humanity and nature are prioritized. This paves the way for a future where harmony with nature and the well-being of the Earth community prevail.

Keywords: Alangan Mangyans, ecological frameworks, sacredness of the land, cultural energy

Procedia PDF Downloads 106
345 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns

Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.

Keywords: UAV, drone, autonomous system, thermal imaging

Procedia PDF Downloads 75
344 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 95
343 Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles

Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided

Keywords: UAV, autonomous systems, drones, geo thermal imaging

Procedia PDF Downloads 86