Search results for: capture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1212

Search results for: capture

492 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials

Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié

Abstract:

Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.

Keywords: bio-based materials, mould growth, numerical prediction, reliability approach

Procedia PDF Downloads 37
491 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 128
490 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 175
489 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 117
488 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya

Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti

Abstract:

Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.

Keywords: aquaculture, ecosystem, blue economy, food security

Procedia PDF Downloads 72
487 The Hidden Role of Interest Rate Risks in Carry Trades

Authors: Jingwen Shi, Qi Wu

Abstract:

We study the role played interest rate risk in carry trade return in order to understand the forward premium puzzle. In this study, our goal is to investigate to what extent carry trade return is indeed due to compensation for risk taking and, more important, to reveal the nature of these risks. Using option data not only on exchange rates but also on interest rate swaps (swaptions), our first finding is that, besides the consensus currency risks, interest rate risks also contribute a non-negligible portion to the carry trade return. What strikes us is our second finding. We find that large downside risks of future exchange rate movements are, in fact, priced significantly in option market on interest rates. The role played by interest rate risk differs structurally from the currency risk. There is a unique premium associated with interest rate risk, though seemingly small in size, which compensates the tail risks, the left tail to be precise. On the technical front, our study relies on accurately retrieving implied distributions from currency options and interest rate swaptions simultaneously, especially the tail components of the two. For this purpose, our major modeling work is to build a new international asset pricing model where we use an orthogonal setup for pricing kernels and specify non-Gaussian dynamics in order to capture three sets of option skew accurately and consistently across currency options and interest rate swaptions, domestic and foreign, within one model. Our results open a door for studying forward premium anomaly through implied information from interest rate derivative market.

Keywords: carry trade, forward premium anomaly, FX option, interest rate swaption, implied volatility skew, uncovered interest rate parity

Procedia PDF Downloads 440
486 A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries

Authors: Kodo Sektani, Apostolos Tsouvalas, Andrei Metrikine

Abstract:

The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes.

Keywords: Dynamics of movable bridges, Bridge machinery, Powertrains, Torque measurements

Procedia PDF Downloads 149
485 Security Report Profiling for Mobile Banking Applications in Indonesia Based on OWASP Mobile Top 10-2016

Authors: Bambang Novianto, Rizal Aditya Herdianto, Raphael Bianco Huwae, Afifah, Alfonso Brolin Sihite, Rudi Lumanto

Abstract:

The mobile banking application is a type of mobile application that is growing rapidly. This is caused by the ease of service and time savings in making transactions. On the other hand, this certainly provides a challenge in security issues. The use of mobile banking can not be separated from cyberattacks that may occur which can result the theft of sensitive information or financial loss. The financial loss and the theft of sensitive information is the most avoided thing because besides harming the user, it can also cause a loss of customer trust in a bank. Cyberattacks that are often carried out against mobile applications are phishing, hacking, theft, misuse of data, etc. Cyberattack can occur when a vulnerability is successfully exploited. OWASP mobile Top 10 has recorded as many as 10 vulnerabilities that are most commonly found in mobile applications. In the others, android permissions also have the potential to cause vulnerabilities. Therefore, an overview of the profile of the mobile banking application becomes an urgency that needs to be known. So that it is expected to be a consideration of the parties involved for improving security. In this study, an experiment has been conducted to capture the profile of the mobile banking applications in Indonesia based on android permission and OWASP mobile top 10 2016. The results show that there are six basic vulnerabilities based on OWASP Mobile Top 10 that are most commonly found in mobile banking applications in Indonesia, i.e. M1:Improper Platform Usage, M2:Insecure Data Storage, M3:Insecure Communication, M5:Insufficient Cryptography, M7:Client Code Quality, and M9:Reverse Engineering. The most permitted android permissions are the internet, status network access, and telephone read status.

Keywords: mobile banking application, OWASP mobile top 10 2016, android permission, sensitive information, financial loss

Procedia PDF Downloads 137
484 Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design

Authors: Yelbek B. Utepov, Assel T. Mukhamejanova, Aliya K. Aldungarova, Aida G. Nazarova, Sabit A. Karaulov, Nurgul T. Alibekova, Aigul K. Kozhas, Dias Kazhimkanuly, Akmaral K. Tleubayeva

Abstract:

This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as Kriging, Inverse Distance Weighting, and Spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's Modulus, Cohesion, and Friction Angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design.

Keywords: soil mechanical properties, spatial interpolation, inverse distance weighting, heatmaps

Procedia PDF Downloads 72
483 Facilitating Written Biology Assessment in Large-Enrollment Courses Using Machine Learning

Authors: Luanna B. Prevost, Kelli Carter, Margaurete Romero, Kirsti Martinez

Abstract:

Writing is an essential scientific practice, yet, in several countries, the increasing university science class-size limits the use of written assessments. Written assessments allow students to demonstrate their learning in their own words and permit the faculty to evaluate students’ understanding. However, the time and resources required to grade written assessments prohibit their use in large-enrollment science courses. This study examined the use of machine learning algorithms to automatically analyze student writing and provide timely feedback to the faculty about students' writing in biology. Written responses to questions about matter and energy transformation were collected from large-enrollment undergraduate introductory biology classrooms. Responses were analyzed using the LightSide text mining and classification software. Cohen’s Kappa was used to measure agreement between the LightSide models and human raters. Predictive models achieved agreement with human coding of 0.7 Cohen’s Kappa or greater. Models captured that when writing about matter-energy transformation at the ecosystem level, students focused on primarily on the concepts of heat loss, recycling of matter, and conservation of matter and energy. Models were also produced to capture writing about processes such as decomposition and biochemical cycling. The models created in this study can be used to provide automatic feedback about students understanding of these concepts to biology faculty who desire to use formative written assessments in larger enrollment biology classes, but do not have the time or personnel for manual grading.

Keywords: machine learning, written assessment, biology education, text mining

Procedia PDF Downloads 275
482 Examining Microbial Decomposition, Carbon Cycling and Storage in Cefni Coastal Salt Marsh, Anglesey Island, Wales, United Kingdom

Authors: Dasat G. S., Christopher F. Tim, J. Dun C.

Abstract:

Salt marshes are known to sequester carbon dioxide from the atmosphere into the soil, but natural and anthropogenic activities could trigger the release of large quantities of centuries of buried carbon dioxide, methane and nitrous oxide (CO2, CH4 and N2O) which are the major greenhouse gases (GHGs) implicated with climate change. Therefore, this study investigated the biogeochemical activities by collecting soil samples from low, mid and high zones of the Cefni salt marsh, within the Maltreat estuary, on the island of Anglesey, north Wales, United Kingdom for a consortium of laboratory based experiments using standard operating protocols (POS) to quantify the soil organic matter contents and the rate of microbial decomposition and carbon storage at the Carbon Capture Laboratory of Bangor University Wales. Results of investigations reveals that the mid zone had 56.23% and 9.98% of soil water and soil organic matter (SOM) contents respectively higher than the low and high zones. Phenol oxidase activity (1193.53µmol dicq g-1 h-1) was highest at the low zone in comparison to the high and mid zones (867.60 and 608.74 µmol dicq g-1 h-1) respectively. Soil phenolic concentration was found to be highest in the mid zone (53.25 µg-1 g-1) when compared with those from the high (15.66 µg-1 g-1) and low (4.18 µg-1 g-1) zones respectively. Activities of hydrolase enzymes showed similar trend for the high and low zones and much lower activities in the mid zone. CO2 flux from the mid zone (6.79 ug g-1 h-1) was significantly greater than those from high (-2.29 ug g-1 h-1) and low (1.30 µg g-1 h-1) zones. Since salt marshes provide essential ecosystem services, their degradation or alteration in whatever form could compromise such ecosystem services and could convert them from net sinks into net sources with consequential effects to the global environment.

Keywords: saltmarsh, decomposition, carbon cycling, enzymes

Procedia PDF Downloads 72
481 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system

Procedia PDF Downloads 91
480 Experimental Study and Numerical Simulation of the Reaction and Flow on the Membrane Wall of Entrained Flow Gasifier

Authors: Jianliang Xu, Zhenghua Dai, Zhongjie Shen, Haifeng Liu, Fuchen Wang

Abstract:

In an entrained flow gasifier, the combustible components are converted into the gas phase, and the mineral content is converted into ash. Most of the ash particles or droplets are deposited on the refractory or membrane wall and form a slag layer that flows down to the quenching system. The captured particle reaction process and slag flow and phase transformation play an important role in gasifier performance and safe and stable operation. The reaction characteristic of captured char particles on the molten slag had been studied by applied a high-temperature stage microscope. The gasification process of captured chars with CO2 on the slag surface was observed and recorded, compared to the original char gasification. The particle size evolution, heat transfer process are discussed, and the gasification reaction index of the capture char particle are modeled. Molten slag layer promoted the char reactivity from the analysis of reaction index, Coupled with heat transfer analysis, shrinking particle model (SPM) was applied and modified to predict the gasification time at carbon conversion of 0.9, and results showed an agreement with the experimental data. A comprehensive model with gas-particle-slag flow and reaction models was used to model the different industry gasifier. The carbon conversion information in the spatial space and slag layer surface are investigated. The slag flow characteristic, such as slag velocity, molten slag thickness, slag temperature distribution on the membrane wall and refractory brick are discussed.

Keywords: char, slag, numerical simulation, gasification, wall reaction, membrane wall

Procedia PDF Downloads 301
479 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 25
478 Symbolic Morphologies: Built Form and Religion in Sylhet City, Bangladesh

Authors: Sayed Ahmed

Abstract:

Religious activities that have evolved the sacred into a dynamic cultural phenomenon in the public realm of Sylhet, Bangladesh, and the spatiality of sacred sites and everyday practices in certain built forms have framed these phenomena. Religious rituals in Sylhet gave birth to unique practices of their own and have a vast impact even on contemporary spatial practices, while most Western researchers are not hopeful about the future of religion. However, despite extensive research on urban morphology and religion separately, there is limited literature on the relationship between these two topics to capture religious perceptions and experiences in urban spaces. This research will try to fill the existing gap and explain sacred within the range of Western sociological and philosophical tools implemented in third-world contexts, which was never highlighted before. This perspective of research puts forth the argument that urban morphology influences sacred experiences and how consecrated entities and religious activities shape the city's structure in return. The methodology of the research will map key morphological and religious variables. This mapping might include festival trajectories, street life observations, pedestrian densities, religious activities, public and private interface types with religious commodification, and the identification of blurred boundaries between sacred and profane on smaller to broader urban scales. To relate the derived cartography, illustrative (not representative) interviews about religious signs and symbols will be conducted and compared accordingly. The possible findings might reintroduce the diversity of religious practices in urban places and develop a decent concept of how sacred and urban morphology are mutually reinforcing the city, which has remained a vital nutrient for the survival of its inhabitants. Such infrequent conceptualizations of urban morphology and its relationship to symbolic sacralization are truly ‘outside’ to those that exist in the West.

Keywords: sylhet, religion, urban morphology, symbolic exchange, Baudrillard

Procedia PDF Downloads 36
477 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria

Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi

Abstract:

The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.

Keywords: CRU, climate change, precipitation, SPI, temperature

Procedia PDF Downloads 78
476 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 53
475 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia

Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez

Abstract:

Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.

Keywords: drinking water, hepatitis A, rotavirus, virus removal

Procedia PDF Downloads 225
474 Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay

Authors: R. Bakr, M. Elmeligy, A. Ibrahim

Abstract:

When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load.

Keywords: numerical simulation, static load test, pile behavior, sand underlain with clay, creep

Procedia PDF Downloads 321
473 An Inquiry about Perception of Autonomous Academe and Accountable Leadership on University Governance: A Case of Bangladesh

Authors: Monjur E-Khoda Tarafdar

Abstract:

Institutional autonomy and academic freedom corresponding to accountability are seen as a core concept of university governance. Universities are crucial factors in search of truth for knowledge production and dissemination. Academic leaders are the pivots to progressively influence the university governance. Therefore, in a continuum of debate about autonomy and accountability in the aspect of perception, academic leadership has been studied. Having longstanding acquaintance in the field the researcher has been instrumental to gain lived experiences of the informants in this qualitative study. Case studies are useful to gain an understanding of the complexities of a particular site to preserve a sense of wholeness of the site being investigated. Thus, multiple case study approach has been employed with a sample size of seventy-one. Such large size of informants was interviewed in order to capture a wider range of views that exist in Bangladesh. This qualitative multiple case study has engaged in-depth interviewing method of academic leaders and policy makers of three case universities. Open-ended semi-structured questionnaires are used to have a comprehensive understanding of how the perception of autonomy and accountability of academic leaders has impacted university governance in the context of Bangladesh. The paper has interpreted the voices of the informants and distinguished both the transformational and transactional style of academic leaderships in local university settings against the globally changed higher education demography. The study finds contextual dissimilarity in the perspectives of autonomy and accountability of academic leadership towards university governance. Unaccountability results in losing autonomous power and collapsing academic excellence. Since accountability grows competitiveness and competence, the paper also focuses on how academic leaders abuse the premise of academic loyalty to universities.

Keywords: academic loyalty, accountability, autonomy, leadership, perception, university governance

Procedia PDF Downloads 311
472 Response to Comprehensive Stress of Growing Greylag Geese Offered Alternative Fiber Sources

Authors: He Li Wen, Meng Qing Xiang, Li De Yong, Zhang Ya Wei, Ren Li Ping

Abstract:

Stress always exerts some extent adverse effects on the animal production, food safety and quality concerns. Stress is commonly-seen in livestock industry, but there is rare literature focusing on the effects of nutrition stress. What’s more, the research always concentrates on the effect of single stress additionally, there is scarce information about the stress effect on waterfowl like goose as they are commonly thought to be tolerant to stress. To our knowledge, it is not always true. The object of this study was to evaluate the response of growing Greylag geese offered different fiber sources to the comprehensive stress, primarily involving the procedures of fasting, transport, capture, etc. The birds were randomly selected to rear with the diets differing in fiber source, being corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS), respectively. Blood samples designated for the determination of stress status were collected before (pre-stress ) and after (post-stress ) the stressors carried out. No difference (P>0.05) was found on the pre-stress blood parameters of growing Greylags fed alternative fiber sources. Irrespective of the dietary differences, the comprehensive stress decreased (P<0.01) the concentration of SOD and increased (P<0.01) that of CK. Between the dietary treatments, the birds fed CSS had a higher (P<0.05)post-stress concentration of MDA than those offered SECS, along with a similarity to those fed the other two fiber sources. There was no difference (P>0.05) found on the stress response of the birds fed different fiber sources. In conclusion, SOD and CK concentration in blood may be more sensitive in indicating stress status and dietary fiber source exerted no effect on the stress response of growing Greylags. There is little chance to improve the stress status by ingesting different fiber sources.

Keywords: blood parameter, fiber source, Greylag goose, stress

Procedia PDF Downloads 512
471 Reimagining the Management of Telco Supply Chain with Blockchain

Authors: Jeaha Yang, Ahmed Khan, Donna L. Rodela, Mohammed A. Qaudeer

Abstract:

Traditional supply chain silos still exist today due to the difficulty of establishing trust between various partners and technological barriers across industries. Companies lose opportunities and revenue and inadvertently make poor business decisions resulting in further challenges. Blockchain technology can bring a new level of transparency through sharing information with a distributed ledger in a decentralized manner that creates a basis of trust for business. Blockchain is a loosely coupled, hub-style communication network in which trading partners can work indirectly with each other for simpler integration, but they work together through the orchestration of their supply chain operations under a coherent process that is developed jointly. A Blockchain increases efficiencies, lowers costs, and improves interoperability to strengthen and automate the supply chain management process while all partners share the risk. Blockchain ledger is built to track inventory lifecycle for supply chain transparency and keeps a journal of inventory movement for real-time reconciliation. State design patterns are used to capture the life cycle (behavior) of inventory management as a state machine for a common, transparent and coherent process which creates an opportunity for trading partners to become more responsive in terms of changes or improvements in process, reconcile discrepancies, and comply with internal governance and external regulations. It enables end-to-end, inter-company visibility at the unit level for more accurate demand planning with better insight into order fulfillment and replenishment.

Keywords: supply chain management, inventory trace-ability, perpetual inventory system, inventory lifecycle, blockchain, inventory consignment, supply chain transparency, digital thread, demand planning, hyper ledger fabric

Procedia PDF Downloads 87
470 The Effects of Impact Forces and Kinematics of Two Different Stance Position at Straight Punch Techniques in Boxing

Authors: Bergun Meric Bingul, Cigdem Bulgan, Ozlem Tore, Mensure Aydin, Erdal Bal

Abstract:

The aim of the study was to compare the effects of impact forces and some kinematic parameters with two different straight punch stance positions in boxing. 9 elite boxing athletes from the Turkish National Team (mean age± SD 19.33±2.11 years, mean height 174.22±3.79 cm, mean weight 66.0±6.62 kg) participated in this study as voluntarily. Boxing athletes performed one trial in straight punch technique for each two different stance positions (orthodox and southpaw stances) at sandbag. The trials were recorded at a frequency of 120Hz using eight synchronized high-speed cameras (Oqus 7+), which were placed, approximately at right- angles to one another. The three-dimensional motion analysis was performed with a Motion Capture System (Qualisys, Sweden). Data was transferred to Windows-based data acquisition software, which was QTM (Qualisys Track Manager). 11 segment models were used for determination of the kinematic variables (Calf, leg, punch, upperarm, lowerarm, trunk). Also, the sandbag was markered for calculation of the impact forces. Wand calibration method (with T stick) was used for field calibration. The mean velocity and acceleration of the punch; mean acceleration of the sandbag and angles of the trunk, shoulder, hip and knee were calculated. Stance differences’ data were compared with Wilcoxon test for using SPSS 20.0 program. According to the results, there were statistically significant differences found in trunk angle on the sagittal plane (yz) (p<0.05). There was a significant difference also found in sandbag acceleration and impact forces between stance positions (p < 0.05). Boxing athletes achieved more impact forces and accelerations in orthodox stance position. It is recommended that to use an orthodox stance instead of southpaw stance in straight punch technique especially for creating more impact forces.

Keywords: boxing, impact force, kinematics, straight punch, orthodox, southpaw

Procedia PDF Downloads 318
469 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA

Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu

Abstract:

The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.

Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding

Procedia PDF Downloads 327
468 Estimate Robert Gordon University's Scope Three Emissions by Nearest Neighbor Analysis

Authors: Nayak Amar, Turner Naomi, Gobina Edward

Abstract:

The Scottish Higher Education Institutes must report their scope 1 & 2 emissions, whereas reporting scope 3 is optional. Scope 3 is indirect emissions which embodies a significant component of total carbon footprint and therefore it is important to record, measure and report it accurately. Robert Gordon University (RGU) reported only business travel, grid transmission and distribution, water supply and transport, and recycling scope 3 emissions. This study estimates the RGUs total scope 3 emissions by comparing it with a similar HEI in scale. The scope 3 emission reporting of sixteen Scottish HEI was studied. Glasgow Caledonian University was identified as the nearest neighbour by comparing its students' full time equivalent, staff full time equivalent, research-teaching split, budget, and foundation year. Apart from the peer, data was also collected from the Higher Education Statistics Agency database. RGU reported emissions from business travel, grid transmission and distribution, water supply, and transport and recycling. This study estimated RGUs scope 3 emissions from procurement, student-staff commute, and international student trip. The result showed that RGU covered only 11% of the scope 3 emissions. The major contributor to scope 3 emissions were procurement (48%), student commute (21%), international student trip (16%), and staff commute (4%). The estimated scope 3 emission was more than 14 times the reported emissions. This study has shown the relative importance of each scope 3 emissions source, which gives a guideline for the HEIs, on where to focus their attention to capture maximum scope 3 emissions. Moreover, it has demonstrated that it is possible to estimate the scope 3 emissions with limited data.

Keywords: HEI, university, emission calculations, scope 3 emissions, emissions reporting

Procedia PDF Downloads 94
467 Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study on the Role of Mobile Technology

Authors: Andreas Ateke Njoh, Shalom Tchokfe Ndoula, Amani Adidja, Germain Nguessan Menan, Annie Mengue, Eric Mboke, Hassan Ben Bachir, Sangwe Clovis Nchinjoh, Yauba Saidu, Laurent Cleenewerck De Kiev

Abstract:

Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in the Country. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the past five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100 000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor using new vaccines in Cameroon.

Keywords: adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK

Procedia PDF Downloads 83
466 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 86
465 Interrogating Bishwas: Reimagining a Christian Neighbourhood in Kolkata, India

Authors: Abhijit Dasgupta

Abstract:

This paper explores the everyday lives of the Christians residing in a Bengali Christian neighborhood in Kolkata, termed here as the larger Christian para (para meaning neighborhood in Bengali). Through ethnography and reading of secondary sources, the paper discerns how various Christians across denominations – Protestants, Catholics and Pentecostals implicate the role of bishwas (faith and belief) in their interpersonal neighborhood relations. The paper attempts to capture the role of bishwas in producing, transforming and revising the meaning of 'neighbourhood' and 'neighbours' and puts forward the argument of the neighbourhood as a theological product. By interrogating and interpreting bishwas through everyday theological discussions and reflections, the paper examines and analyses the ways everyday theology becomes an essential source of power and knowledge for the Bengali Christians in reimagining their neighbourhood compared to the nearby Hindu neighbourhoods. Borrowing literature from everyday theology, faith and belief, the paper reads and analyses various interpretations of theological knowledge across denominations to probe the prominence of bishwas within the Christian community and its role in creating a difference in their place of dwelling. The paper argues that the meaning of neighbourhood is revisited through prayers, sermons and biblical verses. At the same time, the divisions and fissures are seen among Protestants and Catholics and also among native Bengali Protestants and non-native Protestant pastors, which informs us about the complexity of theology in constituting everyday life. Thus, the paper addresses theology's role in creating an ethical Christian neighbourhood amidst everyday tensions and hostilities of diverse religious persuasions. At the same time, it looks into the processes through which multiple theological knowledge leads to schism and interdenominational hostilities. By attempting to answer these questions, the paper brings out Christians' negotiation with the neighbourhood.

Keywords: anthropology, bishwas, christianity, neighbourhood, theology

Procedia PDF Downloads 82
464 Expert Solutions to Affordable Housing Finance Challenges in Developing Economies

Authors: Timothy Akinwande, Eddie C. M. Hui

Abstract:

Housing the urban poor has remained a challenge for many years across the world, especially in developing economies, despite the apparent research attention and policy interventions. It is apt to investigate the prevalent affordable housing (AH) provision challenges using unconventional approaches. It is pragmatic to thoroughly examine housing experts to provide supply-side solutions to AH challenges and investigate informal settlers to deduce solutions from AH demand viewpoints. This study being the supply-side investigation of an ongoing research, interrogated housing experts to determine significant expert solutions. Focus group discussions and in-depth interviews were conducted with housing experts in Nigeria. Through descriptive, content, and systematic thematic analyses of data, major findings are that deliberate finance models designed for the urban poor are the most significant housing finance solution in developing economies. Other findings are that adequately implemented rent control policies, deliberate PPP approaches like inclusionary housing and land-value capture, and urban renewal programmes to enlighten and tutor the urban poor on how to earn more, spend wisely, and invest in their own better housing will effectively solve AH finance challenges. Study findings are informative for the best approaches to achieve effective, affordable housing finance for the urban poor in Nigeria, which is indispensable for the achievement of sustainable development goals. This research’s originality lies in the exploration of experts’ opinions in relation to AH finance to produce an equation model of critical solutions to AH finance challenges. Study data are useful resources for future pro-poor housing studies. This study makes housing policy-oriented recommendations toward effective, affordable housing for the urban poor in developing countries.

Keywords: affordable housing, effective affordable housing, housing policy, housing research, sustainable development, urban poor

Procedia PDF Downloads 81
463 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 722