Search results for: VIIRS data
24536 Regulating Issues concerning Data Protection in Cloud Computing: Developing a Saudi Approach
Authors: Jumana Majdi Qutub
Abstract:
Rationale: Cloud computing has rapidly developed the past few years. Because of the importance of providing protection for personal data used in cloud computing, the role of data protection in promoting trust and confidence in users’ data has become an important policy priority. This research examines key regulatory challenges rose by the growing use and importance of cloud computing with focusing on protection of individuals personal data. Methodology: Describing and analyzing governance challenges facing policymakers and industry in Saudi Arabia, with an account of anticipated governance responses. The aim of the research is to describe and define the regulatory challenges on cloud computing for policy making in Saudi Arabia and comparing it with potential complied issues rose in respect of transported data to EU member state. In addition, it discusses information privacy issues. Finally, the research proposes policy recommendation that would resolve concerns surrounds the privacy and effectiveness of clouds computing frameworks for data protection. Results: There are still no clear regulation in Saudi Arabia specialized in legalizing cloud computing and specialty regulations in transferring data internationally and locally. Decision makers need to review the applicable law in Saudi Arabia that protect information in cloud computing. This should be from an international and a local view in order to identify all requirements surrounding this area. It is important to educate cloud computing users about their information value and rights before putting it in the cloud to avoid further legal complications, such as making an educational program to prevent giving personal information to a bank employee. Therefore, with many kinds of cloud computing services, it is important to have it covered by the law in all aspects.Keywords: cloud computing, cyber crime, data protection, privacy
Procedia PDF Downloads 26224535 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran
Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh
Abstract:
Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.Keywords: Malmquist Index, Grey's Theory, CCR Model, network data envelopment analysis, Iran electricity power chain
Procedia PDF Downloads 16624534 Cloud Shield: Model to Secure User Data While Using Content Delivery Network Services
Authors: Rachna Jain, Sushila Madan, Bindu Garg
Abstract:
Cloud computing is the key powerhouse in numerous organizations due to shifting of their data to the cloud environment. In recent years it has been observed that cloud-based-services are being used on large scale for content storage, distribution and processing. Various issues have been observed in cloud computing environment that need to be addressed. Security and privacy are found topmost concern area. In this paper, a novel security model is proposed to secure data by utilizing CDN services like image to icon conversion. CDN Service is a content delivery service which converts an image to icon, word to pdf & Latex to pdf etc. Presented model is used to convert an image into icon by keeping image secret. Here security of image is imparted so that image should be encrypted and decrypted by data owners only. It is also discussed in the paper that how server performs multiplication and selection on encrypted data without decryption. The data can be image file, word file, audio or video file. Moreover, the proposed model is capable enough to multiply images, encrypt them and send to a server application for conversion. Eventually, the prime objective is to encrypt an image and convert the encrypted image to image Icon by utilizing homomorphic encryption.Keywords: cloud computing, user data security, homomorphic encryption, image multiplication, CDN service
Procedia PDF Downloads 33624533 Data Mining Approach: Classification Model Evaluation
Authors: Lubabatu Sada Sodangi
Abstract:
The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset
Procedia PDF Downloads 37824532 Developing an Information Model of Manufacturing Process for Sustainability
Authors: Jae Hyun Lee
Abstract:
Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.Keywords: process information model, sustainability, OWL, manufacturing
Procedia PDF Downloads 43024531 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28624530 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 15824529 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain
Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel
Abstract:
The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.Keywords: big data, sustainability, supply chain social sustainability, social risk, case study
Procedia PDF Downloads 41024528 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 16224527 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects
Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim
Abstract:
Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation
Procedia PDF Downloads 4524526 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data
Authors: N. Borjalilu, P. Rabiei, A. Enjoo
Abstract:
Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety
Procedia PDF Downloads 16824525 From Modeling of Data Structures towards Automatic Programs Generating
Authors: Valentin P. Velikov
Abstract:
Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling
Procedia PDF Downloads 30624524 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features
Authors: Bo Wang
Abstract:
The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection
Procedia PDF Downloads 28624523 Consortium Blockchain-based Model for Data Management Applications in the Healthcare Sector
Authors: Teo Hao Jing, Shane Ho Ken Wae, Lee Jin Yu, Burra Venkata Durga Kumar
Abstract:
Current distributed healthcare systems face the challenge of interoperability of health data. Storing electronic health records (EHR) in local databases causes them to be fragmented. This problem is aggravated as patients visit multiple healthcare providers in their lifetime. Existing solutions are unable to solve this issue and have caused burdens to healthcare specialists and patients alike. Blockchain technology was found to be able to increase the interoperability of health data by implementing digital access rules, enabling uniformed patient identity, and providing data aggregation. Consortium blockchain was found to have high read throughputs, is more trustworthy, more secure against external disruptions and accommodates transactions without fees. Therefore, this paper proposes a blockchain-based model for data management applications. In this model, a consortium blockchain is implemented by using a delegated proof of stake (DPoS) as its consensus mechanism. This blockchain allows collaboration between users from different organizations such as hospitals and medical bureaus. Patients serve as the owner of their information, where users from other parties require authorization from the patient to view their information. Hospitals upload the hash value of patients’ generated data to the blockchain, whereas the encrypted information is stored in a distributed cloud storage.Keywords: blockchain technology, data management applications, healthcare, interoperability, delegated proof of stake
Procedia PDF Downloads 13824522 Finding the Free Stream Velocity Using Flow Generated Sound
Authors: Saeed Hosseini, Ali Reza Tahavvor
Abstract:
Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.Keywords: the flow generated sound, free stream, sound processing, speed, wave power
Procedia PDF Downloads 41624521 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 28524520 Efficiency of DMUs in Presence of New Inputs and Outputs in DEA
Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi
Abstract:
Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put
Procedia PDF Downloads 45024519 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 13124518 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 15324517 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 9424516 Regression for Doubly Inflated Multivariate Poisson Distributions
Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta
Abstract:
Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios
Procedia PDF Downloads 15624515 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State
Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing
Abstract:
Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch
Procedia PDF Downloads 16724514 An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data
Authors: Necati Içer
Abstract:
Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters
Procedia PDF Downloads 5724513 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 10124512 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems
Authors: Ali Hosseini
Abstract:
Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors
Procedia PDF Downloads 31224511 Increasing the System Availability of Data Centers by Using Virtualization Technologies
Authors: Chris Ewe, Naoum Jamous, Holger Schrödl
Abstract:
Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.Keywords: availability, cloud computing IT service, quality of service, service level agreement, virtualization
Procedia PDF Downloads 53924510 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt
Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer
Abstract:
Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening
Procedia PDF Downloads 5824509 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 30324508 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data
Authors: Rishabh Srivastav, Divyam Sharma
Abstract:
We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets
Procedia PDF Downloads 25024507 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 132