Search results for: Euclidean function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5004

Search results for: Euclidean function

4284 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach

Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong

Abstract:

Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.

Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach

Procedia PDF Downloads 396
4283 Cardiometabolic Risk Factors Responses to Supplemental High Intensity Exercise in Middle School Children

Authors: R. M. Chandler, A. J. Stringer

Abstract:

In adults, short bursts of high-intensity exercise (intensities between 80-95% of maximum heart rates) increase cardiovascular and metabolic function without the time investment of traditional aerobic training. Similar improvements in various health indices are also becoming increasingly evident in children in countries other than the United States. In the United States, physical education programs have become shorter in length and fewer in frequency. With this in the background, it is imperative that health and physical educators delivered well-organized and focused fitness programs that can be tolerated across many different somatotypes. Perhaps the least effective lag-time in a US physical education (PE) class is the first 10 minutes, a time during which children warm up. Replacing a traditional PE warmup with a 10 min high-intensity excise protocol is a time-efficient method to impact health, leaving as much time for other PE material such as skill development, motor behavior development as possible. This supplemented 10 min high-intensity exercise increases cardiovascular function as well as induces favorable body composition changes in as little as six weeks with further enhancement throughout a semester of activity. The supplemental high-intensity exercise did not detract from the PE lesson outcomes.

Keywords: cardiovascular fitness, high intensity interval training, high intensity exercise, pediatric

Procedia PDF Downloads 136
4282 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 160
4281 Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer

Authors: Hatem A. El-Mezayen, Ahmed Abdelmajeed, Fatehya Metwally, Usama Elsaly, Salwa Atef

Abstract:

Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer.

Keywords: metastatic breast cancer, circulating tumor cells, cytokeratin, EpiCam

Procedia PDF Downloads 214
4280 The Relationship Between Sleep Characteristics and Cognitive Impairment in Patients with Alzheimer’s Disease

Authors: Peng Guo

Abstract:

Objective: This study investigates the clinical characteristics of sleep disorders (SD) in patients with Alzheimer's disease (AD) and their relationship with cognitive impairment. Methods: According to the inclusion and exclusion criteria of AD, 460 AD patients were consecutively included in Beijing Tiantan Hospital from January 2016 to April 2022. Demographic data, including gender, age, age of onset, course of disease, years of education and body mass index, were collected. The Pittsburgh sleep quality index (PSQI) scale was used to evaluate the overall sleep status. AD patients with PSQI ≥7 was divided into AD with SD (AD-SD) group, and those with PSQI < 7 were divided into AD with no SD (AD-nSD) group. The overall cognitive function of AD patients was evaluated by the scales of Mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), memory was evaluated by the AVLT-immediate recall, AVLT-delayed recall and CFT-delayed memory scales, the language was evaluated by BNT scale, visuospatial ability was evaluated by CFT-imitation, executive function was evaluated by Stroop-A, Stroop-B and Stroop-C scales, attention was evaluated by TMT-A, TMT-B, and SDMT scales. The correlation between cognitive function and PSQI score in AD-SD group was analyzed. Results: Among the 460 AD patients, 173 cases (37.61%) had SD. There was no significant difference in gender, age, age of onset, course of disease, years of education and body mass index between AD-SD and AD-nSD groups (P>0.05). The factors with significant difference in PSQI scale between AD-SD and AD-nSD groups include sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, use of sleeping medication and daytime dysfunction (P<0.05). Compared with AD-nSD group, the total scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales in AD-SD group were significantly lower(P<0.01,P<0.01,P<0.01,P<0.05). In AD-SD group, subjective sleep quality was significantly and negatively correlated with the scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales (r=-0.277,P=0.000; r=-0.216,P=0.004; r=-0.253,P=0.001; r=-0.239, P=0.004), daytime dysfunction was significantly and negatively correlated with the score of AVLT-immediate recall scale (r=-0.160,P=0.043). Conclusion The incidence of AD-SD is 37.61%. AD-SD patients have worse subjective sleep quality, longer time to fall asleep, shorter sleep time, lower sleep efficiency, severer nighttime SD, more use of sleep medicine, and severer daytime dysfunction. The overall cognitive function, immediate recall and visuospatial ability of AD-SD patients are significantly impaired and are closely correlated with the decline of subjective sleep quality. The impairment of immediate recall is highly correlated with daytime dysfunction in AD-SD patients.

Keywords: Alzheimer's disease, sleep disorders, cognitive impairment, correlation

Procedia PDF Downloads 31
4279 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic

Authors: Cheng Zeng, Xia Luo

Abstract:

Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.

Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization

Procedia PDF Downloads 176
4278 Improved Hash Value Based Stream CipherUsing Delayed Feedback with Carry Shift Register

Authors: K. K. Soundra Pandian, Bhupendra Gupta

Abstract:

In the modern era, as the application data’s are massive and complex, it needs to be secured from the adversary attack. In this context, a non-recursive key based integrated spritz stream cipher with the circulant hash function using delayed feedback with carry shift register (d-FCSR) is proposed in this paper. The novelty of this proposed stream cipher algorithm is to engender the improved keystream using d-FCSR. The proposed algorithm is coded using Verilog HDL to produce dynamic binary key stream and implemented on commercially available FPGA device Virtex 5 xc5vlx110t-2ff1136. The implementation of stream cipher using d-FCSR on the FPGA device operates at a maximum frequency of 60.62 MHz. It achieved the data throughput of 492 Mbps and improved in terms of efficiency (throughput/area) compared to existing techniques. This paper also briefs the cryptanalysis of proposed circulant hash value based spritz stream cipher using d-FCSR is against the adversary attack on a hardware platform for the hardware based cryptography applications.

Keywords: cryptography, circulant function, field programmable gated array, hash value, spritz stream cipher

Procedia PDF Downloads 250
4277 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa

Abstract:

In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 185
4276 Implementing Quality Function Deployment Tool for a Customer Driven New Product Development in a Kuwait SME

Authors: Asma AlQahtani, Jumana AlHadad, Maryam AlQallaf, Shoug AlHasan

Abstract:

New product development (NPD) is the complete process of bringing a new product to the customer by integrating the two broad divisions; one involving the idea generation, product design and detail engineering; and the other involving market research and marketing analysis. It is a common practice for companies to undertake some of these tasks simultaneously (concurrent engineering) and also consider them as an ongoing process (continuous development). The current study explores the framework and methodology for a new product development process utilizing the Quality Function Deployment (QFD) tool for bringing the customer opinion into the product development process. An elaborate customer survey with focus groups in the region was carried out to ensure that customer requirements are integrated into new products as early as the design stage including identifying the recognition of need for the new product. A QFD Matrix (House of Quality) was prepared that links customer requirements to product engineering requirements and a feasibility study and risk assessment exercise was carried out for a Small and Medium Enterprise (SME) in Kuwait for development of the new product. SMEs in Kuwait, particularly in manufacturing sector are mainly focused on serving the local demand, and often lack of product quality adversely affects the ability of the companies to compete on a regional/global basis. Further, lack of focus on identifying customer requirements often deters SMEs to envisage the idea of a New Product Development. The current study therefore focuses in utilizing QFD Matrix right from the conceptual design to detail design and to some extent, extending the link this to design of the manufacturing system. The outcome of the project resulted in a development of the prototype for a new molded product which can ensure consistency between the customer’s requirements and the measurable characteristics of the product. The Engineering Economics and Cost studies were also undertaken to analyse the viability of the new product, the results of which was also linked to the successful implementation of the initial QFD Matrix.

Keywords: Quality Function Deployment, QFD Matrix, new product development, NPD, Kuwait SMEs, prototype development

Procedia PDF Downloads 414
4275 NO2 Exposure Effect on the Occurrence of Pulmonary Dysfunction the Police Traffic in Jakarta

Authors: Bambang Wispriyono, Satria Pratama, Haryoto Kusnoputranto, Faisal Yunus, Meliana Sari

Abstract:

Introduction/objective: The impact of the development of motor vehicles is increasing the number of pollutants in the air. One of the substances that cause serious health problems is NO2. The health impacts arising from exposure to NO2 include pulmonary function impairment. The purpose of this study was to determine the relationship of NO2 exposure on the incidence of pulmonary function impairment. Methods: We are using a cross-sectional study design with 110 traffic police who were divided into two groups: exposed (police officers working on the highway) and the unexposed group (police officers working in the office). Election subject convenient sampling carried out in each group to the minimum number of samples met. Results: The results showed that the average NO2 in the exposed group was 18.72 ppb and unexposed group is 4.14 ppb. Pulmonary dysfunction on exposed and unexposed groups showed that FVC (Forced Vital Capacity) value are 88.68 and 90.27. And FEV1 (Forced Expiratory Volume in One) value are 94.9 and 95.16. Some variables like waist circumference, Body Mass Index, Visceral Fat, and Fat has associated with the incidence of Pulmonary Dysfunction (p < 0.05). Conclusion: Health monitoring is needed to decreasing health risk in Policeman.

Keywords: NO2, pulmonary dysfunction, police traffic, Jakarta

Procedia PDF Downloads 255
4274 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 289
4273 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
4272 Impact of Six-Minute Walk or Rest Break during Extended GamePlay on Executive Function in First Person Shooter Esport Players

Authors: Joanne DiFrancisco-Donoghue, Seth E. Jenny, Peter C. Douris, Sophia Ahmad, Kyle Yuen, Hillary Gan, Kenney Abraham, Amber Sousa

Abstract:

Background: Guidelines for the maintenance of health of esports players and the cognitive changes that accompany competitive gaming are understudied. Executive functioning is an important cognitive skill for an esports player. The relationship between executive functions and physical exercise has been well established. However, the effects of prolonged sitting regardless of physical activity level have not been established. Prolonged uninterrupted sitting reduces cerebral blood flow. Reduced cerebral blood flow is associated with lower cognitive function and fatigue. This decrease in cerebral blood flow has been shown to be offset by frequent and short walking breaks. These short breaks can be as little as 2 minutes at the 30-minute mark and 6 minutes following 60 minutes of prolonged sitting. The rationale is the increase in blood flow and the positive effects this has on metabolic responses. The primary purpose of this study was to evaluate executive function changes following 6-minute bouts of walking and complete rest mid-session, compared to no break, during prolonged gameplay in competitive first-person shooter (FPS) esports players. Methods: This study was conducted virtually due to the Covid-19 pandemic and was approved by the New York Institute of Technology IRB. Twelve competitive FPS participants signed written consent to participate in this randomized pilot study. All participants held a gold ranking or higher. Participants were asked to play for 2 hours on three separate days. Outcome measures to test executive function included the Color Stroop and the Tower of London tests which were administered online each day prior to gaming and at the completion of gaming. All participants completed the tests prior to testing for familiarization. One day of testing consisted of a 6-minute walk break after 60-75 minutes of play. The Rate of Perceived Exertion (RPE) was recorded. The participant continued to play for another 60-75 minutes and completed the tests again. Another day the participants repeated the same methods replacing the 6-minute walk with lying down and resting for 6 minutes. On the last day, the participant played continuously with no break for 2 hours and repeated the outcome tests pre and post-play. A Latin square was used to randomize the treatment order. Results: Using descriptive statistics, the largest change in mean reaction time incorrect congruent pre to post play was seen following the 6-minute walk (662.0 (609.6) ms pre to 602.8 (539.2) ms post), followed by the 6-minute rest group (681.7(618.1) ms pre to 666.3 (607.9) ms post), and with minimal change in the continuous group (594.0(534.1) ms pre to 589.6(552.9) ms post). The mean solution time was fastest in the resting condition (7774.6(6302.8)ms), followed by the walk condition (7929.4 (5992.8)ms), with the continuous condition being slowest (9337.3(7228.7)ms). the continuous group 9337.3(7228.7) ms; 7929.4 (5992.8 ) ms 774.6(6302.8) ms. Conclusion: Short walking breaks improve blood flow and reduce the risk of venous thromboembolism during prolonged sitting. This pilot study demonstrated that a low intensity 6 -minute walk break, following 60 minutes of play, may also improve executive function in FPS gamers.

Keywords: executive function, FPS, physical activity, prolonged sitting

Procedia PDF Downloads 228
4271 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 416
4270 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.

Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation

Procedia PDF Downloads 367
4269 Inventory Policy Above Country Level for Cooperating Countries for Vaccines

Authors: Aysun Pınarbaşı, Béla Vizvári

Abstract:

The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.

Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function

Procedia PDF Downloads 75
4268 Extensions of Schwarz Lemma in the Half-Plane

Authors: Nicolae Pascu

Abstract:

Aside from being a fundamental tool in Complex analysis, Schwarz Lemma-which was finalized in its most complete form at the beginning of the last century-generated an important area of research in various fields of mathematics, which continues to advance even today. We present some properties of analytic functions in the half-plane which satisfy the conditions of the classical Schwarz Lemma (Carathéodory functions) and obtain a generalization of the well-known Aleksandrov-Sobolev Lemma for analytic functions in the half-plane (the correspondent of Schwarz-Pick Lemma from the unit disk). Using this Schwarz-type lemma, we obtain a characterization for the entire class of Carathéodory functions, which might be of independent interest. We prove two monotonicity properties for Carathéodory functions that do not depend upon their normalization at infinity (the hydrodynamic normalization). The method is based on conformal mapping arguments for analytic functions in the half-plane satisfying appropriate conditions, in the spirit of Schwarz lemma. According to the research findings in this paper, our main results give estimates for the modulus and the argument for the entire class of Carathéodory functions. As applications, we give several extensions of Julia-Wolf-Carathéodory Lemma in a half-strip and show that our results are sharp.

Keywords: schwarz lemma, Julia-wolf-caratéodory lemma, analytic function, normalization condition, caratéodory function

Procedia PDF Downloads 218
4267 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 61
4266 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites

Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki

Abstract:

This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.

Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip

Procedia PDF Downloads 324
4265 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 109
4264 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
4263 Lateralisation of Visual Function in Yellow-Eyed Mullet (Aldrichetta forsteri) and Its Role in Schooling Behaviour

Authors: Karen L. Middlemiss, Denham G. Cook, Peter Jaksons, Alistair Jerrett, William Davison

Abstract:

Lateralisation of cognitive function is a common phenomenon found throughout the animal kingdom. Strong biases in functional behaviours have evolved from asymmetrical brain hemispheres which differ in structure and/or cognitive function. In fish, lateralisation is involved in visually mediated behaviours such as schooling, predator avoidance, and foraging, and is considered to have a direct impact on species fitness. Currently, there is very little literature on the role of lateralisation in fish schools. The yellow-eyed mullet (Aldrichetta forsteri), is an estuarine and coastal species found commonly throughout temperate regions of Australia and New Zealand. This study sought to quantify visually mediated behaviours in yellow-eyed mullet to identify the significance of lateralisation, and the factors which influence functional behaviours in schooling fish. Our approach to study design was to conduct a series of tank based experiments investigating; a) individual and population level lateralisation, b) schooling behaviour, and d) optic lobe anatomy. Yellow-eyed mullet showed individual variation in direction and strength of lateralisation in juveniles, and trait specific spatial positioning within the school was evidenced in strongly lateralised fish. In combination with observed differences in schooling behaviour, the possibility of ontogenetic plasticity in both behavioural lateralisation and optic lobe morphology in adults is suggested. These findings highlight the need for research into the genetic and environmental factors (epigenetics) which drive functional behaviours such as schooling, feeding and aggression. Improved knowledge on collective behaviour could have significant benefits to captive rearing programmes through improved culture techniques and will add to the limited body of knowledge on the complex ecophysiological interactions present in our inshore fisheries.

Keywords: cerebral asymmetry, fisheries, schooling, visual bias

Procedia PDF Downloads 214
4262 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 73
4261 Ill-Posed Inverse Problems in Molecular Imaging

Authors: Ranadhir Roy

Abstract:

Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data.

Keywords: constrained minimization, ill-conditioned inverse problems, Tikhonov regularization method, penalty modified barrier function method

Procedia PDF Downloads 270
4260 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 134
4259 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 321
4258 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System

Authors: Nicholas Pearce, Eun-jin Kim

Abstract:

Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.

Keywords: cardiovascular system, left atrium, numerical model, MEF

Procedia PDF Downloads 115
4257 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions

Authors: Yuyang Cheng, Marcos Escobar-Anel

Abstract:

This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.

Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, veri cation theorem

Procedia PDF Downloads 152
4256 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application

Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi

Abstract:

Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.

Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer

Procedia PDF Downloads 17
4255 Functional Beverage to Boosting Immune System in Elderly

Authors: Adineh Tajmousavilangerudi, Ali Zein Alabiden Tlais, Raffaella Di Cagno

Abstract:

The SARS-Cov-2 pandemic has exposed our vulnerability to new illnesses and novel viruses that attack our immune systems, particularly in the elderly. The vaccine is being gradually introduced over the world, but new strains of the virus and COVID-19 will emerge and continue to cause illness. Aging is associated with significant changes in intestinal physiology, which increases the production of inflammatory products, alters the gut microbiota, and consequently establish inadequate immune response to minimize symptoms and disease development. In this context, older people who followed a Mediterranean-style diet, rich in polyphenols and dietary fiber, performed better physically and mentally (1,2). This demonstrates the importance of the human gut microbiome in transforming complex dietary macromolecules into the most biologically available and active nutrients, which in turn help to regulate metabolism and both intestinal and systemic immune function (3,4). The role of lactic acid fermentation is prominent also as a powerful tool for improving the nutritional quality of the human diet by releasing nutrients and boosting the complex bioactive compounds and vitamin content. the PhD project aims to design fermented and functional foods/beverages capable of modulating human immune function via the gut microbiome.

Keywords: functional bevarage, fermented beverage, gut microbiota functionality, immun system

Procedia PDF Downloads 112