Search results for: Gagne’s learning model
14984 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 26914983 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability
Authors: Warda L. Panondi, Norihiro Izumi
Abstract:
Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model
Procedia PDF Downloads 21614982 Desk Graffiti as Art, Archive or Collective Knowledge Sharing: A Case Study of Schools in Addis Ababa, Ethiopia
Authors: Behailu Bezabih Ayele
Abstract:
Illustrative expressions in art education and in overall learning are being given increasing attention in the transmission of knowledge. The objective of this paper, therefore, is to present an analysis of graffiti on school desks-a way of smuggling knowledge on the edge of classroom education and learning. The methodological approach focuses on the systematic collection and selection of desk graffiti. Four schools are chosen to reflect socioeconomic status and gender composition. The analysis focused on the categorization of graffiti by genre. This was followed by an analysis of the style, intensity as well as content of the messages in terms of overall social impacts. The paper grounds the analysis by reviewing the literature on modern education and art education in the Ethiopian context, as well as the place of desk graffiti. The findings generally show that the school desks and the school environment, by and large, have managed to serve as vessels through which formal and informal knowledge is acquired, transmitted, engrained into the students and transformed into messages by the students. The desks have also apparently served as a springboard to maximize the interfaces between several ideas and disciplines and communications. However, the very fact that the desks serve as massive channels of expression and knowledge transmission also points to a lack of breadth availability of channels of expression, perhaps confounding the ability of classrooms as means of outlet of expression and documentation for the students. This points to the need for efforts in education policy and funding of artistic endeavors for young students.Keywords: artistic expression, desk graffiti, education, school children, Ethiopia
Procedia PDF Downloads 7014981 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies
Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel
Abstract:
This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.Keywords: sustainable design, energy modeling, design validation, degree-days methods
Procedia PDF Downloads 42114980 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)
Procedia PDF Downloads 21614979 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 20414978 Innovations and Challenges: Multimodal Learning in Cybersecurity
Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley
Abstract:
There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.Keywords: cybersecurity, new york, city college, graduate degree, master of science
Procedia PDF Downloads 15314977 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 15714976 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 32714975 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 28314974 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 7614973 Production of Plum (Prunus Cerasifera) Concentrate as Edible Color and Evaluation of Color Change Kinetics
Authors: Azade Ghorbani-HasanSaraei, Seyed-Ahmad Shahidi, Sakineh Alizadeh, Adeleh Maghsoudlou
Abstract:
Improvement of color, as a quality attribute of Plum Concentrate, has been made possible by the increase in knowledge of kinetic of color change. Three different heating/evaporation processes were employed for the production of pPlum juice concentrate. The Plum juice was concentrated to a final 55 °Bx from an initial °Bx of 15 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final Plum juice concentration of 55 °Bx was achieved in 17, 24 and 57 min by using the microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Results indicated that variation in TCD followed both first-order and combined kinetics models, and parameters L, a and b followed only combined model. This model implied that the colour formation and pigment destruction occurred during concentration processes of plum juice.Keywords: colour, kinetics, concentration, plum juice
Procedia PDF Downloads 52514972 Water-Energy-Food Nexus Model for India: A Way Forward for Achieving Sustainable Development Goals
Authors: Rajendra Singh, Krishna Mondal, Chandranath Chatterjee
Abstract:
The water, energy, and food (WEF) nexus describes the interconnectedness of these three essential elements of human life. Each of these three sectors depends on the others. India's expanding population, urbanization, and industrialization make WEF nexus management difficult. Coupling and coordination degrees can be used as indicators of a complex system's level of sustainable development. Thus, coupling and coordination of WEF sectors in India are essential for achieving Sustainable Development Goals (SDGs) 2 (zero hunger), 6 (clean water and sanitation), and 7 (affordable and clean energy). This study used a newly developed WEF nexus model and the concept of coupling coordination degree model to examine the coupling and coordination degrees of the WEF nexus at India's sub-national scale (States/Union Territories (UTs)) for the years 2011 and 2021. Results indicate that the WEF nexus coupling degree was reasonably stable among the Indian States/UTs in both years, with all having a coupling degree above 0.90, indicating high-quality coupling. However, the degree of coordination varied spatially and temporally from ‘primary development’ to ‘quality development’ for the Indian States/UTs. In 2021, it went from 53% to 14% intermediate development and 44% to 83% good development compared to 2011. Most Indian States/UTs developed SDG2 more than SDG6 and SDG7. This study also suggests that most States/UTs must implement WEF-related policies and programmes effectively to achieve quality coordinated WEF nexus development. This study may help administrators and policymakers identify States/UTs that need more attention to implement existing or new policies for achieving SDGs 2, 6, and 7.Keywords: WEF nexus model, Pardee-RAND WEF nexus, sustainable development, policy
Procedia PDF Downloads 6714971 Parental Negative Emotional States, Parenting Style and Child Emotional and Behavioural Problems: Australia-Indonesia Cross-Cultural Study
Authors: Yulina E. Riany, Divna Haslam, Matthew Sanders
Abstract:
This cross-cultural study aims to compare the level of parental depression and stress, parenting style use, and child emotional and behavioural problems between parents in Australia as an example of a Western country and parents in Indonesia as an example of Asian culture. A series of hierarchical regressions were undertaken to determine two models examining the factors that predict child problems residing in Australia (Model 1) and in Indonesia (Model 2). The online survey was completed by 179 parents in Australia and 448 parents in Indonesia. Results indicated that Australian parents reported higher levels of depression, authoritative parenting and higher levels of child misbehaviours compared to Indonesian parents. In comparison, Indonesian parents reported higher authoritarian parenting. Analyses performed to examine Model 1 and 2 revealed that parental negative emotional states and parenting style predicted child emotional and behavioural problems in both countries.Keywords: cross-cutural study, parental stress, parenting, child misbehaviour
Procedia PDF Downloads 12514970 Effect of Formative Evaluation with Feedback on Students Economics Achievement in Secondary Education
Authors: Salihu Abdullahi Galle
Abstract:
Students' performance in Economics in schools and on standardized exams in Nigeria has been worrying throughout the years, owing to some teachers' use of conventional and lecture teaching methods. Other obstacles include a lack of training, standardized testing pressure, and aversion to change, all of which can have an impact on students' cognitive ability in Economics and future careers. The researchers employed formative evaluation with feedback (FEFB) to support the teaching and learning process by providing constant feedback to both teachers and students. The researchers employed a quasi-experimental research design to examine two teaching methods (FEFB and traditional). The pre-test and post-test interaction effects were evaluated between students in the experimental group (FEFB) and those in the conventional group. The interaction effects of pre-test and post-test on male and female in the two groups were also examined, with 90 participants. The findings show that students exposed to a FEFB-based teaching approach outperform pupils taught in a traditional classroom setting, and there is no gender interaction effect between the two groups. In light of these findings, the researchers urge that Economics teachers employ FEFB during teaching and learning to ensure timely feedback, and that policymakers ensure that Economics teachers receive training and re-training on FEFB approaches.Keywords: formative evaluation with feedback (FEFB), students, economics achievement, secondary education
Procedia PDF Downloads 5714969 Interdisciplinarity as a Regular Pedagogical Practice in the Classrooms
Authors: Catarina Maria Neto Da Cruz, Ana Maria Reis D’Azevedo Breda
Abstract:
The world is changing and, consequently, the young people need more sophisticated tools and skills to lead with the world’s complexity. The Organisation for Economic Co-operation and Development Learning Framework 2030 suggests an interdisciplinary knowledge as a principle for the future of education systems. In the curricular document Portuguese about the profile of students leaving compulsory education, the critical thinking and creative thinking are pointed out as skills to be developed, which imply the interconnection of different knowledge, applying it in different contexts and learning areas. Unlike primary school teachers, teachers specialized in a specific area lead to more difficulties in the implementation of interdisciplinary approaches in the classrooms and, despite the effort, the interdisciplinarity is not a common practice in schools. Statement like "Mathematics is everywhere" is unquestionable, however, many math teachers show difficulties in presenting such evidence in their classes. Mathematical modelling and problems in real contexts are promising in the development of interdisciplinary pedagogical practices and in Portugal there is a continuous training offer to contribute to the development of teachers in terms of their pedagogical approaches. But when teachers find themselves in the classroom, without a support, do they feel able to implement interdisciplinary practices? In this communication we will try to approach this issue through a case study involving a group of Mathematics teachers, who attended a training aimed at stimulating interdisciplinary practices in real contexts, namely related to the COVID-19 pandemic.Keywords: education, mathematics, teacher training, interdisciplinarity
Procedia PDF Downloads 9914968 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 6614967 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube
Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash
Abstract:
Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.Keywords: shock wave, blast wave, discrete models, shock tube
Procedia PDF Downloads 33714966 Magnetomechanical Effects on MnZn Ferrites
Authors: Ibrahim Ellithy, Mauricio Esguerra, , Rewanth Radhakrishnan
Abstract:
In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT.Keywords: hydrostatic stress, power ferrites, core losses, wireless power transfer
Procedia PDF Downloads 7214965 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 1214964 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 3314963 Creative Accounting as a Financial Numbers Game
Authors: Feddaoui Amina
Abstract:
Through this study we will try to shed light on the theoretical framework proposed for understanding creative accounting as a financial numbers game and one of the most important techniques of accounts manipulation, its main actors and its practices. We will discover the role of the modified Jones model (1995) in detecting creative accounting practices using discretionary accruals. Finally we will try to confirm the importance and the need to address this type of practices using corporate governance as a main control system and an important defense line to reduce these dangerous accounts manipulation.Keywords: financial numbers game, creative accounting, modified Jones model, accounts manipulation
Procedia PDF Downloads 48314962 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 8014961 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand
Authors: Yosiya Chanta, Jantrararuk Tovaranont
Abstract:
Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change
Procedia PDF Downloads 10214960 Adsorption of Methyl Violet Dye from Aqueous Solution onto Modified Kapok Sawdust : Characteristics and Equilibrium Studies
Authors: Widi Astuti, Triastuti Sulistyaningsih, Masni Maksiola
Abstract:
Kapok sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of methyl violet in aqueous solution. To increase the adsorption capacity, kapok sawdust was reacted with sodium hydroxide (NaOH) solution having various concentrations. Various physico-chemical parameters such as solution pH, contact time and initial dye concentration were studied. Langmuir, Freundlich and Redlich-Peterson isotherm model were used to analyze the equilibrium data. The research shows that the experimental data fitted well with the Redlich-Peterson model, with the value of constants are 41.001 for KR, 0.523 for aR and 0.799 for g.Keywords: kapok sawdust, methyl violet, dye, adsorption
Procedia PDF Downloads 31514959 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection
Authors: T. T. Tham
Abstract:
The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management
Procedia PDF Downloads 12614958 A TFETI Domain Decompositon Solver for von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening
Authors: Martin Cermak, Stanislav Sysala
Abstract:
In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MATLAB.Keywords: isotropic-kinematic hardening, TFETI, domain decomposition, parallel solution
Procedia PDF Downloads 42314957 Syntax and Words as Evolutionary Characters in Comparative Linguistics
Authors: Nancy Retzlaff, Sarah J. Berkemer, Trudie Strauss
Abstract:
In the last couple of decades, the advent of digitalization of any kind of data was probably one of the major advances in all fields of study. This paves the way for also analysing these data even though they might come from disciplines where there was no initial computational necessity to do so. Especially in linguistics, one can find a rather manual tradition. Still when considering studies that involve the history of language families it is hard to overlook the striking similarities to bioinformatics (phylogenetic) approaches. Alignments of words are such a fairly well studied example of an application of bioinformatics methods to historical linguistics. In this paper we will not only consider alignments of strings, i.e., words in this case, but also alignments of syntax trees of selected Indo-European languages. Based on initial, crude alignments, a sophisticated scoring model is trained on both letters and syntactic features. The aim is to gain a better understanding on which features in two languages are related, i.e., most likely to have the same root. Initially, all words in two languages are pre-aligned with a basic scoring model that primarily selects consonants and adjusts them before fitting in the vowels. Mixture models are subsequently used to filter ‘good’ alignments depending on the alignment length and the number of inserted gaps. Using these selected word alignments it is possible to perform tree alignments of the given syntax trees and consequently find sentences that correspond rather well to each other across languages. The syntax alignments are then filtered for meaningful scores—’good’ scores contain evolutionary information and are therefore used to train the sophisticated scoring model. Further iterations of alignments and training steps are performed until the scoring model saturates, i.e., barely changes anymore. A better evaluation of the trained scoring model and its function in containing evolutionary meaningful information will be given. An assessment of sentence alignment compared to possible phrase structure will also be provided. The method described here may have its flaws because of limited prior information. This, however, may offer a good starting point to study languages where only little prior knowledge is available and a detailed, unbiased study is needed.Keywords: alignments, bioinformatics, comparative linguistics, historical linguistics, statistical methods
Procedia PDF Downloads 15914956 Strengthening Adult Literacy Programs in Order to End Female Genital Mutilation to Achieve Sustainable Development Goals
Authors: Odenigbo Veronica Ngozi, Lorreta Chika Ukwuaba
Abstract:
This study focuses on how the strengthening adult literacy program can help accelerate transformative strategies to end female genital mutilation (FGM) in Nigeria, specifically in Nsukka Local Government Area. The research delves into the definition of FGM, adult literacy programs, and how to achieve ending FGM to attain Sustainable Development Goals (SDGs) in 2030. It further discusses the practice of FGM in Nigeria and emphasizes the statement of the problem. The main aim of the study is to investigate how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs in 2030. The researchers utilized a survey research design to conduct the study in Nsukka L.G.A. The population was composed of 26 facilitators and adult learners in five adult learning centers in the area. The entire population was used as a sample, and structured questionnaires were employed to elicit information. The items on the questionnaire were face-validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation while the hypothesis was tested at 0.05 level of degree of significance using a t-test. The findings show that through adult literacy program acceleration of transformative strategies, the practices of FGM can be ended. Strengthening adult literacy programs is a good channel to end or stop FGM through the knowledge and skill acquired from the learning centers. The theoretical importance of the study lies in the fact that it highlights the role of adult literacy programs in accelerating transformative strategies to combat harmful cultural practices such as FGM. It further supports the importance of education and knowledge in achieving sustainable development goals by 2030. Structured questionnaires were distributed to an entire population of 26 facilitators and adult learners in five adult learning centers in Nsukka L.G.A. The questionnaire items were face–validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation, while the hypothesis was tested using a t-test at 0.05 level of degree of significance. The study addressed the question of how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs by 2030. In conclusion, the study found that adult literacy is a good tool to end FGM in Nigeria. The recommendations were that government, non-governmental organizations (NGOs), Community-based organizations (CBOs), and individuals should support the funding and establishment of adult literacy centers in communities so as to reach every illiterate parent or individual and acquire the knowledge and skill needed to understand the negative effect of FGM in the life of a girl child.Keywords: adult literacy, female genital mutilation, learning centers, SDGs, strengthening
Procedia PDF Downloads 7114955 The Artificial Intelligence Driven Social Work
Authors: Avi Shrivastava
Abstract:
Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.Keywords: social work, artificial intelligence, AI based social work, machine learning, technology
Procedia PDF Downloads 107