Search results for: physicochemical parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8998

Search results for: physicochemical parameters

1798 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 42
1797 Anthropometric and Physical Fitness Ability Profile of Elite and Non-Elite Boxers of Manipur

Authors: Anthropometric, Physical Fitness Ability Profile of Elite, Non-Elite Boxers of Manipur

Abstract:

Background: Boxing is one of the oldest combat sports where different anthropological and fitness ability parameters determine performance. It is characterized by short duration, high intensity bursts of activity. The purpose of this research was to determine anthropometric and physical fitness profile of male elite and non-elite boxers of Manipur and to compare the two groups. Materials and Methods: Nineteen subjects were selected as elite boxers and twenty-four were non-elite boxers of Manipur. A cross-sectional study was conducted on anthropometric measurements and physical fitness ability tests on 33 subjects (elite and non-elite boxers). Statistical analysis was done using descriptive statistics, t-test and logistic regression with the help of SPSS version 15 software. Results: Results showed elite boxers have significantly reduced neck girth and calf girth as compare to non-elite boxers. Elite boxers have significantly lower sub scapular skin fold (SSF) and supra iliac skin fold (SISF) than their counterparts. Higher stature, larger BTB and lower percent fat are associated with higher performance in boxing. Sit ups (SU), standing Broad Jump (SBJ), Plat taping (PT), Sit and reach (SAR) and Harvard Step Test (HST) are predicted as most contributing factors enhancing performance level among the physical fitness components. Elite boxers are found to have more functional strength (sit ups), higher explosive strength (SBJ), more agility (PT), cardio-vascular endurance and flexibility (SAR) than non-elite boxers. Conclusion: In conclusion, lower fat, higher lean body mass, larger bi-trochantric breadth, high explosive strength, agility and flexibility are significantly associated with higher performance and chance of becoming elite boxers.

Keywords: anthropometry, elite and non-elite boxers, Manipur, physical fitness

Procedia PDF Downloads 244
1796 Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation

Authors: Yujie Zhou, Hee-Seong Byun, Sang-In Bak, Eui-Joon Kil, Kyung Joo Min, Vivek Chavan, Won Kyong Cho, Sukchan Lee, Seung-Woo Hong, Tae-Sun Park

Abstract:

Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research.

Keywords: tomato (solanum lycopersicum), fast neutron irradiation, RNA-sequence, transcriptome expression

Procedia PDF Downloads 287
1795 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India

Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability

Abstract:

In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.

Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability

Procedia PDF Downloads 79
1794 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 387
1793 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 91
1792 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing

Authors: Vishnu A., Ashesh Saha

Abstract:

The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.

Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve

Procedia PDF Downloads 56
1791 Studies on the Use of Sewage Sludge in Agriculture or in Incinerators

Authors: Catalina Iticescu, Lucian Georgescu, Mihaela Timofti, Dumitru Dima, Gabriel Murariu

Abstract:

The amounts of sludge resulting from the treatment of domestic and industrial wastewater can create serious environmental problems if no solutions are found to eliminate them. At present, the predominant method of sewage sludge disposal is to store and use them in agricultural applications. The sewage sludge has fertilizer properties and can be used to enrich agricultural soils due to the nutrient content. In addition to plant growth (nitrogen and phosphorus), the sludge also contains heavy metals in varying amounts. An increasingly used method is the incineration of sludge. Thermal processes can be used to convert large amounts of sludge into useful energy. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), nutrients and heavy metals. The determination methods were electrochemical, spectrophotometric and energy dispersive X–ray analyses (EDX). The results of the tests made on the content of nutrients in the sewage sludge have shown that existing nutrients can be used to increase the fertility of agricultural soils. The conclusion reached was that these sludge can be safely used on agricultural land and with good agricultural productivity results. To be able to use sewage sludge as a fuel, we need to know its calorific values. For wet sludge, the caloric power is low, while for dry sludge it is high. Higher calorific value and lower calorific value are determined only for dry solids. The apparatus used to determine the calorific power was a Parr 6755 Solution Calorimeter Calorimeter (Parr Instrument Company USA 2010 model). The calorific capacities for the studied sludge indicate that they can be used successfully in incinerators. Mixed with coal, they can also be used to produce electricity. The advantages are: it reduces the cost of obtaining electricity and considerably reduces the amount of sewage sludge.

Keywords: agriculture, incinerators, properties, sewage sludge

Procedia PDF Downloads 152
1790 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process

Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac

Abstract:

Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.

Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction

Procedia PDF Downloads 291
1789 Design and Optimization of an Electromagnetic Vibration Energy Converter

Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun

Abstract:

Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.

Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil

Procedia PDF Downloads 272
1788 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties

Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda

Abstract:

This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.

Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties

Procedia PDF Downloads 32
1787 Reservoir Characterization using Comparative Petrophysical Testing Approach Acquired with Facies Architecture Properties Analysis

Authors: Axel Priambodo, Dwiharso Nugroho

Abstract:

Studies conducted to map the reservoir properties based on facies architecture in which to determine the distribution of the petrophysical properties and calculate hydrocarbon reserves in study interval. Facies Architecture analysis begins with stratigraphic correlation that indicates the area is divided into different system tracts. The analysis of distribution patterns and compiling core analysis with facies architecture model show that there are three estuarine facies appear. Formation evaluation begins with shale volume calculation using Asquith-Krygowski and Volan Triangle Method. Proceed to the calculation of the total and effective porosity using the Bateman-Konen and Volan Triangle Method. After getting the value of the porosity calculation was continued to determine the effective water saturation and non-effective by including parameters of water resistivity and resistivity clay. The results of the research show that the Facies Architecture on the field in divided into three main facies which are Estuarine Channel, Estuarine Sand Bar, and Tidal Flat. The petrophysics analysis are done by comparing different methods also shows that the Volan Triangle Method does not give a better result of the Volume Shale than the Gamma Ray Method, but on the other hand, the Volan Triangle Methode is better on calculating porosity compared to the Bateman-Konen Method. The effective porosity distributions are affected by the distribution of the facies. Estuarine Sand Bar has a low porosity number and Estuarine Channel has a higher number of the porosity. The effective water saturation is controlled by structure where on the closure zone the water saturation is lower than the area beneath it. It caused by the hydrocarbon accumulation on the closure zone.

Keywords: petrophysics, geology, petroleum, reservoir

Procedia PDF Downloads 294
1786 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 35
1785 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline

Procedia PDF Downloads 456
1784 Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions

Authors: Mohamed Rashad, Mohamed Hafez, Mohamed Emran, Emad Aboukila, Ibrahim Nassar

Abstract:

Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing Zea mays L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented.

Keywords: corn and squash germination, environmentally friendly organic wastes, soil carbon sequestration, spent grains as soil amendment, water holding capacity

Procedia PDF Downloads 479
1783 Braiding Channel Pattern Due to Variation of Discharge

Authors: Satish Kumar, Spandan Sahu, Sarjati Sahoo, K. K. Khatua

Abstract:

An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions.

Keywords: active braided intensity, bed load, sediment transport, shear stress, total braided intensity

Procedia PDF Downloads 111
1782 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 399
1781 Interpreting Possibilities: Teaching Without Borders

Authors: Mira Kadric

Abstract:

The proposed paper deals with a new developed approach for interpreting teaching, combining traditional didactics with a new element. The fundamental principle of the approach is taken from the theatre pedagogy (Augusto Boal`s Theatre of the Oppressed) and includes the discussion on social power relations. From the point of view of education sociology this implies strengthening students’ individual potential for self-determination on a number of levels, especially in view of the present increase in social responsibility. This knowledge constitutes a starting point and basis for the process of self-determined action. This takes place in the context of a creative didactic policy which identifies didactic goals, provides clear sequences of content, specifies interdisciplinary methods and examines their practical adequacy and ultimately serves not only individual translators and interpreters, but all parties involved. The goal of the presented didactic model is to promote independent work and problem-solving strategies; this helps to develop creative potential and self-confident behaviour. It also conveys realistic knowledge of professional reality and thus also of the real socio-political and professional parameters involved. As well as providing a discussion of fundamental questions relevant to Translation and Interpreting Studies, this also serves to improve this interdisciplinary didactic approach which simulates interpreting reality and illustrates processes and strategies which (can) take place in real life. This idea is illustrated in more detail with methods taken from the Theatre of the Oppressed created by Augusto Boal. This includes examples from (dialogue) interpreting teaching based on documentation from recordings made in a seminar in the summer term 2014.

Keywords: augusto boal, didactic model, interpreting teaching, theatre of the oppressed

Procedia PDF Downloads 398
1780 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium

Authors: Pradeepa Teegala, Ramreddy Chitteti

Abstract:

This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method

Procedia PDF Downloads 256
1779 Auto Calibration and Optimization of Large-Scale Water Resources Systems

Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari

Abstract:

Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.

Keywords: auto-calibration, Gilan, large-scale water resources, simulation

Procedia PDF Downloads 312
1778 Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong

Authors: Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guang-Hao Chen

Abstract:

Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment.

Keywords: food waste, resource recovery, greenhouse emissions, energy balance

Procedia PDF Downloads 83
1777 Correlation between Neck Circumference and Other Anthropometric Indices as a Predictor of Obesity

Authors: Madhur Verma, Meena Rajput, Kamal Kishore

Abstract:

Background: The general view that obesity is a problem of prosperous Western countries has been repealed with substantial evidence showing that middle-income countries like India are now at the heart of a fat explosion. Neck circumference has evolved as a promising index to measure obesity, because of the convenience of its use, even in culture sensitive population. Objectives: To determine whether neck circumference (NC) was associated with overweight and obesity and contributed to the prediction like other classical anthropometric indices. Methodology: Cross-sectional study consisting of 1080 adults (> 19 years) selected through Multi-stage random sampling between August 2013 and September 2014 using the pretested semi-structured questionnaire. After recruitment, the demographic and anthropometric parameters [BMI, Waist & Hip Circumference (WC, HC), Waist to hip ratio (WHR), waist to height ratio (WHtR), body fat percentage (BF %), neck circumference (NC)] were recorded & calculated as per standard procedures. Analysis was done using appropriate statistical tests. (SPSS, version 21.) Results: Mean age of study participants was 44.55+15.65 years. Overall prevalence of overweight & obesity as per modified criteria for Asian Indians (BMI ≥ 23 kg/m2) was 49.62% (Females-51.48%; Males-47.77%). Also, number of participants having high WHR, WHtR, BF%, WC & NC was 827(76.57%), 530(49.07%), 513(47.5%), 537(49.72%) & 376(34.81%) respectively. Variation of NC, BMI & BF% with age was non- significant. In both the genders, as per the Pearson’s correlational analysis, neck circumference was positively correlated with BMI (men, r=0.670 {p < 0.05}; women, r=0.564 {p < 0.05}), BF% (men, r=0.407 {p < 0.05}; women, r= 0.283 {p < 0.05}), WC (men, r=0.598{p < 0.05}; women, r=0.615 {p < 0.05}), HC (men, r=0.512{p < 0.05}; women, r=0.523{p < 0.05}), WHR (men, r= 0.380{p > 0.05}; women, r=0.022{p > 0.05}) & WHtR (men, r=0.318 {p < 0.05}; women, r=0.396{p < 0.05}). On ROC analysis, NC showed good discriminatory power to identify obesity with AUC (AUC for males: 0.822 & females: 0.873; p- value < 0.001) with maximum sensitivity and specificity at a cut-off value of 36.55 cms for males & 34.05cms for females. Conclusion: NC has fair validity as a community-based screener for overweight and obese individuals in the study context and has also correlated well with other classical indices.

Keywords: neck circumference, obesity, anthropometric indices, body fat percentage

Procedia PDF Downloads 223
1776 Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials

Authors: Si-Geun Choi, Hoon-Jae Park, Jung-Woo Cho, Jin-Ho Lim, Jin-Young Park, Joo-Young Oh, Jae-Il Jeong Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study.

Keywords: laser cladding, tilting pad bearing, white metal, mechanical properties

Procedia PDF Downloads 359
1775 Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties

Procedia PDF Downloads 412
1774 Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons

Authors: Tei Kim, Brooklynn McNeil, Kathryn Dunn, Douglas I. Walker

Abstract:

To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease.

Keywords: bioinformatics, automation, opentrons, research

Procedia PDF Downloads 86
1773 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 130
1772 A Knowledge-Based Development of Risk Management Approaches for Construction Projects

Authors: Masoud Ghahvechi Pour

Abstract:

Risk management is a systematic and regular process of identifying, analyzing and responding to risks throughout the project's life cycle in order to achieve the optimal level of elimination, reduction or control of risk. The purpose of project risk management is to increase the probability and effect of positive events and reduce the probability and effect of unpleasant events on the project. Risk management is one of the most fundamental parts of project management, so that unmanaged or untransmitted risks can be one of the primary factors of failure in a project. Effective risk management does not apply to risk regression, which is apparently the cheapest option of the activity. However, the main problem with this option is the economic sensitivity, because what is potentially profitable is by definition risky, and what does not pose a risk is economically interesting and does not bring tangible benefits. Therefore, in relation to the implemented project, effective risk management is finding a "middle ground" in its management, which includes, on the one hand, protection against risk from a negative direction by means of accurate identification and classification of risk, which leads to analysis And it becomes a comprehensive analysis. On the other hand, management using all mathematical and analytical tools should be based on checking the maximum benefits of these decisions. Detailed analysis, taking into account all aspects of the company, including stakeholder analysis, will allow us to add what will become tangible benefits for our project in the future to effective risk management. Identifying the risk of the project is based on the theory that which type of risk may affect the project, and also refers to specific parameters and estimating the probability of their occurrence in the project. These conditions can be divided into three groups: certainty, uncertainty, and risk, which in turn support three types of investment: risk preference, risk neutrality, specific risk deviation, and its measurement. The result of risk identification and project analysis is a list of events that indicate the cause and probability of an event, and a final assessment of its impact on the environment.

Keywords: risk, management, knowledge, risk management

Procedia PDF Downloads 34
1771 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics

Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh

Abstract:

Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.

Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters

Procedia PDF Downloads 537
1770 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing

Abstract:

A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).

Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity

Procedia PDF Downloads 51
1769 Reconstruction of the 'Bakla' as an Identity

Authors: Oscar H. Malaco Jr.

Abstract:

Homosexuality has been adapted as the universal concept that defines the deviations from the heteronormative parameters of society. Sexual orientation and gender identities have been used in a concretely separate manner the same way as the dynamics between man and woman, male and female, gender and sex operate. These terms are all products of human beings’ utilization of language. Language has proven its power to define and determine the status and the categories of the subjects in society. This tool developed by human beings provides a definition of their own specific cultural community and their individual selves that either claim or oppugn their space in the social hierarchy. The label ‘bakla’ is reasoned as an identity which is a reaction to the spectral disposition of gender and sexuality in the Philippine society. To expose the Filipino constitutes of bakla is the major attempt of this study. Through the methods of Sikolohiyang Pilipino (Filipino Psychology), namely Pagtatanung-tanong (asking questions) and Pakikipagkuwentuhan (story-telling), the utterances of the bakla were gathered and analyzed in a rhetorical and ideological manner. Furthermore, the Dramatistic Pentad of Kenneth Burke was adapted as a methodology and also utilized as a perspective of analysis. The results suggest that the bakla as an identity carries the hurdles of class. The performativity of the bakla is proven to be a cycle propelled by their guilt to be identified and recognized as subjects in a society where heteronormative power contests their gender and sexual expressions as relatively aberrational to the binary gender and sexual roles. The labels, hence, are potent structures that control the disposition of the bakla in the society, reflecting an aspect of the disposition of Filipino identities. After all, performing kabaklaan in the Philippine society is interplay between resistance and conformity to the hegemonic dominions as a result of imperial attempts to universalize the concept of homosexuality between and among distant cultural communities.

Keywords: gender identity, sexual orientation, rhetoric, performativity

Procedia PDF Downloads 419