Search results for: continuous learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9247

Search results for: continuous learning

2047 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery

Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser

Abstract:

Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.

Keywords: adverse events, global trigger tool, patient safety, record review

Procedia PDF Downloads 249
2046 Using Students’ Perceptions for Measuring Teacher Effectiveness

Authors: Muhammad Akram, Qamar Naseem, Imtiaz Ahmad

Abstract:

The purpose of this study was to correlate students’ perceptions of teacher effectiveness with their academic achievement in English and Mathematics at the secondary level (grade 9th) based on five national professional standards for teacher evaluation in Pakistan (subject matter knowledge, instructional planning and strategies, assessment, learning environment, effective communication. A Students’ Perceptions of Teacher Effectiveness Questionnaire (SPTEQ) was developed by the researchers to collect data from 2009 students from forty public girls and boys high/ higher secondary schools in district Khanewal, Pakistan. The overall reliability of the SPTEQ was α=.86. The study found a significant positive relationship among all the five factors of teacher effectiveness construct. The study also showed significant, positive relationship between teacher effectiveness factors and students’ achievement in English and mathematics. No significant differences were found between male and female students’ perceptions about their English teacher effectiveness. The implications include students’ personal attachments with their teachers that might convince them to overrate their teachers.

Keywords: communication, students’ achievement, teacher effectiveness, teaching strategies, teaching strategies

Procedia PDF Downloads 300
2045 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
2044 Towards Expanding the Use of the Online Judge UnitJudge for Java Programming Exercises and Web Development Practices in Computer Science Education

Authors: Iván García-Magariño, Javier Bravo-Agapito, Marta López-Fernández

Abstract:

Online judges have proven their utility in partial auto-evaluation of programming short exercises in the last decades. UnitJudge online judge has the advantage of facilitating the evaluation of separate units to provide more segregate and meaningful feedback to students in complex exercises and practices. This paper discusses the use of UnitUdge in advanced Java object-oriented programming exercises and web development practices. This later usage has been proposed by means of the Selenium Java library and classes to provide the web address. Consequently, UnitJudge is an online judge system that can be applied in several subjects, and therefore, many other students would take advantage of self-testing their exercises. This paper presents the experiments with a Java programming exercise for learning Java object-oriented classes with a generic type. Considering 10 students who voluntarily used UnitJudge, 80% successfully learned this concept, passing the judge exercise with correct results.

Keywords: online judges, programming skills, computer science education, auto-evaluation

Procedia PDF Downloads 101
2043 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 306
2042 Public Values in Service Innovation Management: Case Study in Elderly Care in Danish Municipality

Authors: Christian T. Lystbaek

Abstract:

Background: The importance of innovation management has traditionally been ascribed to private production companies, however, there is an increasing interest in public services innovation management. One of the major theoretical challenges arising from this situation is to understand public values justifying public services innovation management. However, there is not single and stable definition of public value in the literature. The research question guiding this paper is: What is the supposed added value operating in the public sphere? Methodology: The study takes an action research strategy. This is highly contextualized methodology, which is enacted within a particular set of social relations into which on expects to integrate the results. As such, this research strategy is particularly well suited for its potential to generate results that can be applied by managers. The aim of action research is to produce proposals with a creative dimension capable of compelling actors to act in a new and pertinent way in relation to the situations they encounter. The context of the study is a workshop on public services innovation within elderly care. The workshop brought together different actors, such as managers, personnel and two groups of users-citizens (elderly clients and their relatives). The process was designed as an extension of the co-construction methods inherent in action research. Scenario methods and focus groups were applied to generate dialogue. The main strength of these techniques is to gather and exploit as much data as possible by exposing the discourse of justification used by the actors to explain or justify their points of view when interacting with others on a given subject. The approach does not directly interrogate the actors on their values, but allows their values to emerge through debate and dialogue. Findings: The public values related to public services innovation management in elderly care were identified in two steps. In the first step, identification of values, values were identified in the discussions. Through continuous analysis of the data, a network of interrelated values was developed. In the second step, tracking group consensus, we then ascertained the degree to which the meaning attributed to the value was common to the participants, classifying the degree of consensus as high, intermediate or low. High consensus corresponds to strong convergence in meaning, intermediate to generally shared meanings between participants, and low to divergences regarding the meaning between participants. Only values with high or intermediate degree of consensus were retained in the analysis. Conclusion: The study shows that the fundamental criterion for justifying public services innovation management is the capacity for actors to enact public values in their work. In the workshop, we identified two categories of public values, intrinsic value and behavioural values, and a list of more specific values.

Keywords: public services innovation management, public value, co-creation, action research

Procedia PDF Downloads 280
2041 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 470
2040 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug

Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia

Abstract:

The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery

Procedia PDF Downloads 379
2039 The Way Digitized Lectures and Film Presence Coaching Impact Academic Identity: An Expert Facilitated Participatory Action Research Case Study

Authors: Amanda Burrell, Tonia Gary, David Wright, Kumara Ward

Abstract:

This paper explores the concept of academic identity as it relates to the lecture, in particular, the digitized lecture delivered to a camera, in the absence of a student audience. Many academics have the performance aspect of the role thrust upon them with little or no training. For the purpose of this study, we look at the performance of the academic identity and examine tailored film presence coaching for its contributions toward academic identity, specifically in relation to feelings of self-confidence and diminishment of discomfort or stage fright. The case is articulated through the lens of scholar-practitioners, using expert facilitated participatory action research. It demonstrates in our sample of experienced academics, all reported some feelings of uncertainty about presenting lectures to camera prior to coaching. We share how power poses and reframing fear, produced improvements in the ease and competency of all participants. We share exactly how this insight could be adapted for self-coaching by any academic when called to present to a camera and consider the relationship between this and academic identity.

Keywords: academic identity, digitized lecture, embodied learning, performance coaching

Procedia PDF Downloads 337
2038 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus

Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan

Abstract:

Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.

Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing

Procedia PDF Downloads 0
2037 Predictive Modelling Approach to Identify Spare Parts Inventory Obsolescence

Authors: Madhu Babu Cherukuri, Tamoghna Ghosh

Abstract:

Factory supply chain management spends billions of dollars every year to procure and manage equipment spare parts. Due to technology -and processes changes some of these spares become obsolete/dead inventory. Factories have huge dead inventory worth millions of dollars accumulating over time. This is due to lack of a scientific methodology to identify them and send the inventory back to the suppliers on a timely basis. The standard approach followed across industries to deal with this is: if a part is not used for a set pre-defined period of time it is declared dead. This leads to accumulation of dead parts over time and these parts cannot be sold back to the suppliers as it is too late as per contract agreement. Our main idea is the time period for identifying a part as dead cannot be a fixed pre-defined duration across all parts. Rather, it should depend on various properties of the part like historical consumption pattern, type of part, how many machines it is being used in, whether it- is a preventive maintenance part etc. We have designed a predictive algorithm which predicts part obsolescence well in advance with reasonable accuracy and which can help save millions.

Keywords: obsolete inventory, machine learning, big data, supply chain analytics, dead inventory

Procedia PDF Downloads 319
2036 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 212
2035 Knowledge, Attitudes and Readiness of Students towards Higher Order Thinking Skills

Authors: Mohd Aderi Che Noh, Tuan Rahayu Tuan Lasan

Abstract:

Higher order thinking skills (HOTS) is an important skill in the Malaysian education system to produce a knowledgeable generation, able to think critically and creatively in order to face the challenges in the future. Educational challenges of the 21st century require that all students to have the HOTS. Therefore, this study aims to identify the level of knowledge, attitude and readiness of students towards HOTS. The respondents were 127 form four students from schools in the Federal Territory of Putrajaya. This study is quantitative survey using a questionnaire to collect data. Data were analyzed using Statistical Package for the Social Sciences (SPSS) 23.0. The results showed that knowledge, attitudes and readiness of students towards HOTS lam were at a high level. Inferential analysis showed that there was a significant relationship between knowledge with attitude and readiness towards HOTS. This study provides information to the schools and teachers to improve the teaching and learning to increase students HOTS and fulfilling the hope of Ministry of Education to produce human capital who can be globally competitive.

Keywords: high order thinking skills, teaching, education, Malaysia

Procedia PDF Downloads 212
2034 Teaching Young Learners How to Work Together: Pedagogical Ideas for Language Teachers

Authors: Tomas Kos

Abstract:

An increasing body of research has explored patterns of interaction and peer support among young learners. Although some studies suggest that young learners can collaborate and support each other, other studies indicate that young learners may lack the ability to work together and support one another when interacting on classroom tasks. Moreover, despite the claims that peer collaboration is conducive to learning, studies have not paid enough attention to the “how” to enhance peer collaboration on classroom tasks. To fill this gap, this “how-to” article proposes that teaching young learners how to work together is a powerful pedagogical tool that can greatly improve collaborative behavior and a sense of mutuality among young learners. This article will pay particular attention to primary schools and the context of English as a foreign language. It will first review literature related to patterns of interaction and peer support conducted in the cognitive and sociocultural framework. It will then address what it actually means to collaborate. At the heart of the article, it will discuss some practical pedagogical ideas for language teachers, which entail teaching collaborative principles and strategies that will help their students to support each other and engage in communication with each other.

Keywords: young learners, peer collaboration, peer interaction, peer support, patterns of interaction

Procedia PDF Downloads 157
2033 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 107
2032 The Use of Language as a Cognitive Tool in French Immersion Teaching

Authors: Marie-Josée Morneau

Abstract:

A literacy-based approach, centred on the use of the language of instruction as a cognitive tool, can increase the L2 communication skills of French immersion students. Academic subject areas such as science and mathematics offer an authentic language learning context where students can become more proficient speakers while using specific vocabulary and language structures to learn, interact and communicate their reasoning, when provided the opportunities and guidance to do so. In this Canadian quasi-experimental study, the effects of teaching specific language elements during mathematic classes through literacy-based activities in Early French Immersion programming were compared between two Grade 7/8 groups: the experimental group, which received literacy-based teaching for a 6-week period, and the control group, which received regular teaching instruction. The results showed that the participants from the experimental group made more progress in their mathematical communication skills, which suggests that targeting L2 language as a cognitive tool can be beneficial to immersion learners who learn mathematic concepts and remind us that all L2 teachers are language teachers.

Keywords: mathematics, French immersion, literacy-based, oral communication, L2

Procedia PDF Downloads 76
2031 Using a Strength Based Approach to Teaching Children with Special Needs

Authors: Eunice Tan

Abstract:

The purpose of this presentation is to look at an alternative to the approach and methodologies of working with a child with special needs. The strength-based approach to education embodies a paradigm shift. It is a strategy to move away from a deficit-based methodology which inadvertently may lead to an extensive list of things that the child cannot do or is unable to do. Today, many parents of individuals with special needs are focused on the individual’s deficits rather than on his or her strengths. Even when parents recognise and identify their child’s savant strengths to be valuable and wish to develop their abilities, they face the challenge that there are insufficient programs committed to supporting the development and improvement of such abilities. What is a strength-based approach in education? A strength-based approach in education focuses on students' positive qualities and contributions to class instead of the skills and abilities they may not have. Many schools are focused on the child’s special educational needs rather than the whole child. Parents interviewed have said that they have to engage external tutors to help hone in on their child’s interests and strengths. The strength-based approach to writing statements encourages educators to find out: • What a child can do • What a child can do when he or she is given educational support • Learning more about children with special needs and their strengths and talents will broaden our understanding of how we can help them with language acquisition, social skills, as well as self-help and independence skills.

Keywords: special needs, strengths, and talents, alternative educational approach, strength based approach

Procedia PDF Downloads 289
2030 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 103
2029 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales

Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias

Abstract:

Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.

Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline

Procedia PDF Downloads 80
2028 Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017

Authors: Yudo Prasetyo, Hana Sugiastu Firdaus, Diyanah Diyanah

Abstract:

The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.

Keywords: aquifer, differential interferometric synthetic aperture radar (DINSAR), land subsidence, small baseline area subset (SBAS)

Procedia PDF Downloads 182
2027 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
2026 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167
2025 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 161
2024 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking

Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim

Abstract:

In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.

Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network

Procedia PDF Downloads 160
2023 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 47
2022 Light-Controlled Gene Expression in Yeast

Authors: Peter. M. Kusen, Georg Wandrey, Christopher Probst, Dietrich Kohlheyer, Jochen Buchs, Jorg Pietruszkau

Abstract:

Light as a stimulus provides the capability to develop regulation techniques for customizable gene expression. A great advantage is the extremely flexible and accurate dosing that can be performed in a non invasive and sterile manner even for high throughput technologies. Therefore, light regulation in a multiwell microbioreactor system was realized providing the opportunity to control gene expression with outstanding complexity. A light-regulated gene expression system in Saccharomyces cerevisiae was designed applying the strategy of caged compounds. These compounds are photo-labile protected and therefore biologically inactive regulator molecules which can be reactivated by irradiation with certain light conditions. The “caging” of a repressor molecule which is consumed after deprotection was essential to create a flexible expression system. Thereby, gene expression could be temporally repressed by irradiation and subsequent release of the active repressor molecule. Afterwards, the repressor molecule is consumed by the yeast cells leading to reactivation of gene expression. A yeast strain harboring a construct with the corresponding repressible promoter in combination with a fluorescent marker protein was applied in a Photo-BioLector platform which allows individual irradiation as well as online fluorescence and growth detection. This device was used to precisely control the repression duration by adjusting the amount of released repressor via different irradiation times. With the presented screening platform the regulation of complex expression procedures was achieved by combination of several repression/derepression intervals. In particular, a stepwise increase of temporally-constant expression levels was demonstrated which could be used to study concentration dependent effects on cell functions. Also linear expression rates with variable slopes could be shown representing a possible solution for challenging protein productions, whereby excessive production rates lead to misfolding or intoxication. Finally, the very flexible regulation enabled accurate control over the expression induction, although we used a repressible promoter. Summing up, the continuous online regulation of gene expression has the potential to synchronize gene expression levels to optimize metabolic flux, artificial enzyme cascades, growth rates for co cultivations and many other applications addicted to complex expression regulation. The developed light-regulated expression platform represents an innovative screening approach to find optimization potential for production processes.

Keywords: caged-compounds, gene expression regulation, optogenetics, photo-labile protecting group

Procedia PDF Downloads 327
2021 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 104
2020 Judicial Independence in Uzbekistan and the United States of America: Comparative-Legal Analysis

Authors: Botirjon Kosimov

Abstract:

This work sheds light on the reforms towards the independence of the judiciary in Uzbekistan, as well as issues of further ensuring judicial independence in the country based on international values, particularly the legal practice of the United States. In every democratic state infringed human rights are reinstated and violated laws are protected by the help of justice based on the strict principle of judicial independence. The realization of this principle in Uzbekistan has been paid much attention since the proclamation of its independence. In the country, a series of reforms have been implemented in the field of the judiciary in order to actualize the principle of judicial independence. Uzbekistan has been reforming the judiciary considering both international and national values and practice of foreign countries. While forming a democratic state based on civil society, Uzbekistan shares practice with the most developed countries in the world. The United States of America can be a clear example which is worth learning how to establish and ensure an independent judiciary. It seems that although Uzbekistan has reformed the judiciary efficiently, it should further reform considering the legal practice of the United States.

Keywords: dependent judges, independent judges, judicial independence, judicial reforms, judicial life tenure, obstacles to judicial independence

Procedia PDF Downloads 266
2019 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
2018 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 327