Search results for: logistic model tree
10929 Model of a Context-Aware Middleware for Mobile Workers
Authors: Esraa Moustafa, Gaetan Rey, Stephane Lavirotte, Jean-Yves Tigli
Abstract:
With the development of Internet of Things and Web of Things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services that meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We, therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service that is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent Observation Channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.Keywords: auto-adaptation, context-awareness, middleware, reasoning engine
Procedia PDF Downloads 25310928 Environmental Monitoring by Using Unmanned Aerial Vehicle (UAV) Images and Spatial Data: A Case Study of Mineral Exploitation in Brazilian Federal District, Brazil
Authors: Maria De Albuquerque Bercot, Caio Gustavo Mesquita Angelo, Daniela Maria Moreira Siqueira, Augusto Assucena De Vasconcellos, Rodrigo Studart Correa
Abstract:
Mining is an important socioeconomic activity in Brazil although it negatively impacts the environment. Mineral operations cause irreversible changes in topography, removal of vegetation and topsoil, habitat destruction, displacement of fauna, loss of biodiversity, soil erosion, siltation of watercourses and have potential to enhance climate change. Due to the impacts and its pollution potential, mining activity in Brazil is legally subjected to environmental licensing. Unlicensed mining operations or operations that not abide to the terms of an obtained license are taken as environmental crimes in the country. This work reports a case analyzed in the Forensic Institute of the Brazilian Federal District Civil Police. The case consisted of detecting illegal aspects of sand exploitation from a licensed mine in Federal District, nearby Brasilia city. The fieldwork covered an area of roughly 6 ha, which was surveyed with an unmanned aerial vehicle (UAV) (PHANTOM 3 ADVANCED). The overflight with UAV took about 20 min, with maximum flight height of 100 m. 592 UAV georeferenced images were obtained and processed in a photogrammetric software (AGISOFT PHOTOSCAN 1.1.4), which generated a mosaic of geo-referenced images and a 3D model in less than six working hours. The 3D model was analyzed in a forensic software for accurate modeling and volumetric analysis. (MAPTEK I-SITE FORENSIC 2.2). To ensure the 3D model was a true representation of the mine site, coordinates of ten control points and reference measures were taken during fieldwork and compared to respective spatial data in the model. Finally, these spatial data were used for measuring mining area, excavation depth and volume of exploited sand. Results showed that mine holder had not complied with some terms and conditions stated in the granted license, such as sand exploration beyond authorized extension, depth and volume. Easiness, the accuracy and expedition of procedures used in this case highlight the employment of UAV imagery and computational photogrammetry as efficient tools for outdoor forensic exams, especially on environmental issues.Keywords: computational photogrammetry, environmental monitoring, mining, UAV
Procedia PDF Downloads 32210927 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho
Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa
Abstract:
Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.Keywords: numerical modeling, open pit mine, shear zone, slope stability
Procedia PDF Downloads 30010926 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 14710925 Whole Body Cooling Hypothermia Treatment Modelling Using a Finite Element Thermoregulation Model
Authors: Ana Beatriz C. G. Silva, Luiz Carlos Wrobel, Fernando Luiz B. Ribeiro
Abstract:
This paper presents a thermoregulation model using the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a FEM package applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter method of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and a intravascular catheter. A comparison is made between the results obtained and the effects of each case in brain temperature reduction in a required time, maintenance of body temperature at moderate hypothermia levels and gradual rewarming.Keywords: brain cooling, finite element method, hypothermia treatment, thermoregulation
Procedia PDF Downloads 31510924 Artificial Intelligence in the Design of High-Strength Recycled Concrete
Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh
Abstract:
The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials
Procedia PDF Downloads 2210923 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran
Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro
Abstract:
The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis
Procedia PDF Downloads 53210922 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps
Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe
Abstract:
Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion
Procedia PDF Downloads 17210921 Experimental and Numerical Analysis of the Effects of Ball-End Milling Process upon Residual Stresses and Cutting Forces
Authors: Belkacem Chebil Sonia, Bensalem Wacef
Abstract:
The majority of ball end milling models includes only the influence of cutting parameters (cutting speed, feed rate, depth of cut). Furthermore, this influence is studied in most of works on cutting force. Therefore, this study proposes an accurate ball end milling process modeling which includes also the influence of tool workpiece inclination. In addition, a characterization of residual stresses resulting of thermo mechanical loading in the workpiece was also presented. Moreover, the study of the influence of tool workpiece inclination and cutting parameters was made on residual stresses distribution. In order to achieve the predetermination of cutting forces and residual stresses during a milling operation, a thermo mechanical three-dimensional numerical model of ball end milling was developed. Furthermore, an experimental companion of ball end milling tests was realized on a 5-axis machining center to determine the cutting forces and characterize the residual stresses. The simulation results are compared with the experiment to validate the Finite Element Model and subsequently identify the optimum inclination angle and cutting parameters.Keywords: ball end milling, cutting forces, cutting parameters, residual stress, tool-workpiece inclination
Procedia PDF Downloads 31210920 Multicollinearity and MRA in Sustainability: Application of the Raise Regression
Authors: Claudia García-García, Catalina B. García-García, Román Salmerón-Gómez
Abstract:
Much economic-environmental research includes the analysis of possible interactions by using Moderated Regression Analysis (MRA), which is a specific application of multiple linear regression analysis. This methodology allows analyzing how the effect of one of the independent variables is moderated by a second independent variable by adding a cross-product term between them as an additional explanatory variable. Due to the very specification of the methodology, the moderated factor is often highly correlated with the constitutive terms. Thus, great multicollinearity problems arise. The appearance of strong multicollinearity in a model has important consequences. Inflated variances of the estimators may appear, there is a tendency to consider non-significant regressors that they probably are together with a very high coefficient of determination, incorrect signs of our coefficients may appear and also the high sensibility of the results to small changes in the dataset. Finally, the high relationship among explanatory variables implies difficulties in fixing the individual effects of each one on the model under study. These consequences shifted to the moderated analysis may imply that it is not worth including an interaction term that may be distorting the model. Thus, it is important to manage the problem with some methodology that allows for obtaining reliable results. After a review of those works that applied the MRA among the ten top journals of the field, it is clear that multicollinearity is mostly disregarded. Less than 15% of the reviewed works take into account potential multicollinearity problems. To overcome the issue, this work studies the possible application of recent methodologies to MRA. Particularly, the raised regression is analyzed. This methodology mitigates collinearity from a geometrical point of view: the collinearity problem arises because the variables under study are very close geometrically, so by separating both variables, the problem can be mitigated. Raise regression maintains the available information and modifies the problematic variables instead of deleting variables, for example. Furthermore, the global characteristics of the initial model are also maintained (sum of squared residuals, estimated variance, coefficient of determination, global significance test and prediction). The proposal is implemented to data from countries of the European Union during the last year available regarding greenhouse gas emissions, per capita GDP and a dummy variable that represents the topography of the country. The use of a dummy variable as the moderator is a special variant of MRA, sometimes called “subgroup regression analysis.” The main conclusion of this work is that applying new techniques to the field can improve in a substantial way the results of the analysis. Particularly, the use of raised regression mitigates great multicollinearity problems, so the researcher is able to rely on the interaction term when interpreting the results of a particular study.Keywords: multicollinearity, MRA, interaction, raise
Procedia PDF Downloads 11010919 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model
Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo
Abstract:
Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish
Procedia PDF Downloads 33410918 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 13310917 Central Solar Tower Model
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.Keywords: solar oven, solar cooker, composite material, low cost, sustainable development
Procedia PDF Downloads 42010916 Optimal Allocation of Multiple Emergency Resources for a Single Potential Accident Node: A Mixed Integer Linear Program
Authors: Yongjian Du, Jinhua Sun, Kim M. Liew, Huahua Xiao
Abstract:
Optimal allocation of emergency resources before a disaster is of great importance for emergency response. In reality, the pre-protection for a single critical node where accidents may occur is common. In this study, a model is developed to determine location and inventory decisions of multiple emergency resources among a set of candidate stations to minimize the total cost based on the constraints of budgetary and capacity. The total cost includes the economic accident loss which is accorded with probability distribution of time and the warehousing cost of resources which is increasing over time. A ratio is set to measure the degree of a storage station only serving the target node that becomes larger with the decrease of the distance between them. For the application of linear program, it is assumed that the length of travel time to the accident scene of emergency resources has a linear relationship with the economic accident loss. A computational experiment is conducted to illustrate how the proposed model works, and the results indicate its effectiveness and practicability.Keywords: emergency response, integer linear program, multiple emergency resources, pre-allocation decisions, single potential accident node
Procedia PDF Downloads 15710915 Collaboration-Based Islamic Financial Services: Case Study of Islamic Fintech in Indonesia
Authors: Erika Takidah, Salina Kassim
Abstract:
Digital transformation has accelerated in the new millennium. It is reshaping the financial services industry from a traditional system to financial technology. Moreover, the number of financial inclusion rates in Indonesia is less than 60%. An innovative model needed to elucidate this national problem. On the other hand, the Islamic financial service industry and financial technology grow fast as a new aspire in economic development. An Islamic bank, takaful, Islamic microfinance, Islamic financial technology and Islamic social finance institution could collaborate to intensify the financial inclusion number in Indonesia. The primary motive of this paper is to examine the strategy of collaboration-based Islamic financial services to enhance financial inclusion in Indonesia, particularly facing the digital era. The fundamental findings for the main problems are the foundations and key ecosystems aspect involved in the development of collaboration-based Islamic financial services. By using the Interpretive Structural Model (ISM) approach, the core problems faced in the development of the models have lacked policy instruments guarding the collaboration-based Islamic financial services with fintech work process and availability of human resources for fintech. The core strategies or foundations that are needed in the framework of collaboration-based Islamic financial services are the ability to manage and analyze data in the big data era. For the aspects of the Ecosystem or actors involved in the development of this model, the important actor is government or regulator, educational institutions, and also existing industries (Islamic financial services). The outcome of the study designates that strategy collaboration of Islamic financial services institution supported by robust technology, a legal and regulatory commitment of the regulators and policymakers of the Islamic financial institutions, extensive public awareness of financial inclusion in Indonesia. The study limited itself to realize financial inclusion, particularly in Islamic finance development in Indonesia. The study will have an inference for the concerned professional bodies, regulators, policymakers, stakeholders, and practitioners of Islamic financial service institutions.Keywords: collaboration, financial inclusion, Islamic financial services, Islamic fintech
Procedia PDF Downloads 15010914 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid
Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal
Abstract:
In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation
Procedia PDF Downloads 31410913 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 44510912 Intelligent Tutor Using Adaptive Learning to Partial Discharges with Virtual Reality Systems
Authors: Hernández Yasmín, Ochoa Alberto, Hurtado Diego
Abstract:
The aim of this study is developing an intelligent tutoring system for electrical operators training with virtual reality systems at the laboratory center of partials discharges LAPEM. The electrical domain requires efficient and well trained personnel, due to the danger involved in the partials discharges field, qualified electricians are required. This paper presents an overview of the intelligent tutor adaptive learning design and user interface with VR. We propose the develop of constructing a model domain of a subset of partial discharges enables adaptive training through a trainee model which represents the affective and knowledge states of trainees. According to the success of the intelligent tutor system with VR, it is also hypothesized that the trainees will able to learn the electrical domain installations of partial discharges and gain knowledge more efficient and well trained than trainees using traditional methods of teaching without running any risk of being in danger, traditional methods makes training lengthily, costly and dangerously.Keywords: intelligent tutoring system, artificial intelligence, virtual reality, partials discharges, adaptive learning
Procedia PDF Downloads 31810911 System Identification of Building Structures with Continuous Modeling
Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab
Abstract:
This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction
Procedia PDF Downloads 23710910 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes
Authors: Nahashon Mwirigi
Abstract:
The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling
Procedia PDF Downloads 1910909 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 40710908 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion
Procedia PDF Downloads 29410907 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns
Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling
Procedia PDF Downloads 5710906 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling
Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci
Abstract:
Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.Keywords: land use, spatial resolution, WRF-Chem, air quality assessment
Procedia PDF Downloads 15910905 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration
Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng
Abstract:
The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.Keywords: aquaculture, sensor, ammonia, dissolved oxygen
Procedia PDF Downloads 28710904 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 23010903 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery
Authors: Peña A. Roland R., Lozano P. Jean P.
Abstract:
The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow
Procedia PDF Downloads 12910902 Quantification of the Non-Registered Electrical and Electronic Equipment for Domestic Consumption and Enhancing E-Waste Estimation: A Case Study on TVs in Vietnam
Authors: Ha Phuong Tran, Feng Wang, Jo Dewulf, Hai Trung Huynh, Thomas Schaubroeck
Abstract:
The fast increase and complex components have made waste of electrical and electronic equipment (or e-waste) one of the most problematic waste streams worldwide. Precise information on its size on national, regional and global level has therefore been highlighted as prerequisite to obtain a proper management system. However, this is a very challenging task, especially in developing countries where both formal e-waste management system and necessary statistical data for e-waste estimation, i.e. data on the production, sale and trade of electrical and electronic equipment (EEE), are often lacking. Moreover, there is an inflow of non-registered electronic and electric equipment, which ‘invisibly’ enters the EEE domestic market and then is used for domestic consumption. The non-registration/invisibility and (in most of the case) illicit nature of this flow make it difficult or even impossible to be captured in any statistical system. The e-waste generated from it is thus often uncounted in current e-waste estimation based on statistical market data. Therefore, this study focuses on enhancing e-waste estimation in developing countries and proposing a calculation pathway to quantify the magnitude of the non-registered EEE inflow. An advanced Input-Out Analysis model (i.e. the Sale–Stock–Lifespan model) has been integrated in the calculation procedure. In general, Sale-Stock-Lifespan model assists to improve the quality of input data for modeling (i.e. perform data consolidation to create more accurate lifespan profile, model dynamic lifespan to take into account its changes over time), via which the quality of e-waste estimation can be improved. To demonstrate the above objectives, a case study on televisions (TVs) in Vietnam has been employed. The results show that the amount of waste TVs in Vietnam has increased four times since 2000 till now. This upward trend is expected to continue in the future. In 2035, a total of 9.51 million TVs are predicted to be discarded. Moreover, estimation of non-registered TV inflow shows that it might on average contribute about 15% to the total TVs sold on the Vietnamese market during the whole period of 2002 to 2013. To tackle potential uncertainties associated with estimation models and input data, sensitivity analysis has been applied. The results show that both estimations of waste and non-registered inflow depend on two parameters i.e. number of TVs used in household and the lifespan. Particularly, with a 1% increase in the TV in-use rate, the average market share of non-register inflow in the period 2002-2013 increases 0.95%. However, it decreases from 27% to 15% when the constant unadjusted lifespan is replaced by the dynamic adjusted lifespan. The effect of these two parameters on the amount of waste TV generation for each year is more complex and non-linear over time. To conclude, despite of remaining uncertainty, this study is the first attempt to apply the Sale-Stock-Lifespan model to improve the e-waste estimation in developing countries and to quantify the non-registered EEE inflow to domestic consumption. It therefore can be further improved in future with more knowledge and data.Keywords: e-waste, non-registered electrical and electronic equipment, TVs, Vietnam
Procedia PDF Downloads 24910901 Application of a Hybrid QFD-FEA Methodology for Nigerian Garment Designs
Authors: Adepeju A. Opaleye, Adekunle Kolawole, Muyiwa A. Opaleye
Abstract:
Consumers’ perceived quality of imported product has been an impediment to business in the Nigeria garment industry. To improve patronage of made- in-Nigeria designs, the first step is to understand what the consumer expects, then proffer ways to meet this expectation through product redesign or improvement of the garment production process. The purpose of this study is to investigate drivers of consumers’ value for typical Nigerian garment design (NGD). An integrated quality function deployment (QFD) and functional, expressive and aesthetic (FEA) Consumer Needs methodology helps to minimize incorrect understanding of potential consumer’s requirements in mass customized garments. Six themes emerged as drivers of consumer’s satisfaction: (1) Style variety (2) Dimensions (3) Finishing (4) Fabric quality (5) Garment Durability and (6) Aesthetics. Existing designs found to lead foreign designs in terms of its acceptance for informal events, style variety and fit. The latter may be linked to its mode of acquisition. A conceptual model of NGD acceptance in the context of consumer’s inherent characteristics, social and the business environment is proposed.Keywords: Perceived quality, Garment design, Quality function deployment, FEA Model , Mass customisation
Procedia PDF Downloads 14210900 The Role of Contextual Factors in the Sustainability Reporting of Australian and New Zealand Companies
Authors: Ramona Zharfpeykan
Abstract:
The concept of sustainability is generally considered as a key topic in many countries, and sustainability reporting is becoming an important tool for companies to communicate their sustainability plans and performance to their stakeholders. There have been various studies on factors that may influence sustainability reporting in companies. This study examines the possible effect of some of the organisational factors on corporate sustainability reporting. The organisational factors included in this study are a company’s type (public or private), industry, and size as well as managers’ perception of the level of importance of indicators in reporting these indicators. A survey was conducted from 240 Australian and New Zealand companies in various industries. They were asked about their perception of the importance of sustainability indicators in their performance and if they report these indicators. The GRI indicators used to develop the survey. A multiple regression model was developed using reporting strategy score as dependent and type, size, industry categorisation, and managers’ perception of the level of importance of the GRI indicators as independent factors. The results show that among all the factors included in the model, size of a company and the perception of managers of the level of importance of environmental and labour practice indicators can affect the sustainability scores of these companies.Keywords: sustainability reporting, global reporting initiative, sustainability reporting strategy, organisational features
Procedia PDF Downloads 165