Search results for: vertical amplification factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6557

Search results for: vertical amplification factor

5867 Correction Factor to Enhance the Non-Standard Hammer Effect Used in Standard Penetration Test

Authors: Khaled R. Khater

Abstract:

The weight of the SPT hammer is standard (0.623kN). The locally manufacturer drilling rigs use hammers, sometimes deviating off the standard weight. This affects the field measured blow counts (Nf) consequentially, affecting most of correlations previously obtained, as they were obtained based on standard hammer weight. The literature presents energy corrections factor (η2) to be applied to the SPT total input energy. This research investigates the effect of the hammer weight variation, as a single parameter, on the field measured blow counts (Nf). The outcome is a correction factor (ηk), equation, and correction chart. They are recommended to adjust back the measured misleading (Nf) to the standard one as if the standard hammer is used. This correction is very important to be done in such cases where a non-standard hammer is being used because the bore logs in any geotechnical report should contain true and representative values (Nf), let alone the long records of correlations, already in hand. The study here-in is achieved by using laboratory physical model to simulate the SPT dripping hammer mechanism. It is designed to allow different hammer weights to be used. Also, it is manufactured to avoid and eliminate the energy loss sources. This produces a transmitted efficiency up to 100%.

Keywords: correction factors, hammer weight, physical model, standard penetration test

Procedia PDF Downloads 381
5866 Analysis of the Dynamics of Transmission of Microsporidia MB Inside the Population of Anopheles Mosquitoes

Authors: Charlene N. T. Mfangnia, Henri Tonnang, Berge Tsanou, Jeremy Herren

Abstract:

The Microsporidia MB found in the populations of anopheles is a recently discovered symbiont responsible for the Plasmodium transmission blocking. From early studies, it was established that the symbiont can be transmitted vertically and horizontally. The present study uses compartmental mathematical modelling approach to investigate the dynamics of Microsporidia transmission in the mosquito population with the mindset of establishing a mechanism for use to control malaria. Data and information obtained from laboratory experiments are used to estimate the model parameters with and without temperature dependency of mosquito traits. We carry out the mathematical analysis focusing on the equilibria states and their stability for the autonomous model. Through the modelling experiments, we are able to assess and confirm the contribution of vertical and horizontal transmission in the proliferation of Microsporidia MB in the mosquito population. In addition, the basic and target reproductions are computed, and some long-term behaviours of the model, such as the local (and global) stability of equilibrium points, are rigorously analysed and illustrated numerically. We establish the conditions responsible for the low prevalence of the symbiont-infected mosquitoes observed in nature. Moreover, we identify the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes as mosquito traits that significantly influence the spread of Microsporidia MB. Furthermore, we highlight the influence of temperature in the establishment and persistence of MB-infected mosquitoes in a given area.

Keywords: microsporidia MB, vertical transmission, horizontal transmission, compartmental modelling approach, temperature-dependent mosquito traits, malaria, plasmodium-transmission blocking

Procedia PDF Downloads 127
5865 The Mechanisms of Peer-Effects in Education: A Frame-Factor Analysis of Instruction

Authors: Pontus Backstrom

Abstract:

In the educational literature on peer effects, attention has been brought to the fact that the mechanisms creating peer effects are still to a large extent hidden in obscurity. The hypothesis in this study is that the Frame Factor Theory can be used to explain these mechanisms. At heart of the theory is the concept of “time needed” for students to learn a certain curricula unit. The relations between class-aggregated time needed and the actual time available, steers and hinders the actions possible for the teacher. Further, the theory predicts that the timing and pacing of the teachers’ instruction is governed by a “criterion steering group” (CSG), namely the pupils in the 10th-25th percentile of the aptitude distribution in class. The class composition hereby set the possibilities and limitations for instruction, creating peer effects on individual outcomes. To test if the theory can be applied to the issue of peer effects, the study employs multilevel structural equation modelling (M-SEM) on Swedish TIMSS 2015-data (Trends in International Mathematics and Science Study; students N=4090, teachers N=200). Using confirmatory factor analysis (CFA) in the SEM-framework in MPLUS, latent variables are specified according to the theory, such as “limitations of instruction” from TIMSS survey items. The results indicate a good model fit to data of the measurement model. Research is still in progress, but preliminary results from initial M-SEM-models verify a strong relation between the mean level of the CSG and the latent variable of limitations on instruction, a variable which in turn have a great impact on individual students’ test results. Further analysis is required, but so far the analysis indicates a confirmation of the predictions derived from the frame factor theory and reveals that one of the important mechanisms creating peer effects in student outcomes is the effect the class composition has upon the teachers’ instruction in class.

Keywords: compositional effects, frame factor theory, peer effects, structural equation modelling

Procedia PDF Downloads 130
5864 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 163
5863 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 296
5862 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease

Authors: Mehdi Razeghi

Abstract:

Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.

Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering

Procedia PDF Downloads 78
5861 An Investigation of Vegetable Oils as Potential Insulating Liquid

Authors: Celal Kocatepe, Eyup Taslak, Celal Fadil Kumru, Oktay Arikan

Abstract:

While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.

Keywords: breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils

Procedia PDF Downloads 689
5860 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: polymerase chain reaction, thermal cycles, capillary, TE cooler

Procedia PDF Downloads 448
5859 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 183
5858 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA

Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran

Abstract:

The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.

Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy

Procedia PDF Downloads 121
5857 A Psychosocial Approach to Community Development, Lessons from the Transition Town Movement in Italy

Authors: Anna Zoli

Abstract:

In recent years, we have been witnessing a surge of locally-sustained communities committed to promoting new ethical economies while fostering the full participation of socially excluded groups and individuals into the labor market. This article explores the practices of a particular community development model, Transition Towns, as implemented in Monteveglio, Italy. Data were gathered throughout two years long ethnography, using multiple qualitative techniques, namely participant observation, document analysis, and semi-structured interviews. Data were analyzed triangulating from multiple sources of evidence and using hybrid thematic analysis. Major findings show that Transition Town movement works on two main axes, vertical and horizontal. Vertical transition involves interactions with an overreaching political, economic, and social structure which is not transitioning, and therefore poses structural resistances to the transformative social change fostered by the TT. Conversely, horizontal transition involves intragroup dynamics within the communal relational and geographical spaces and therefore poses process resistances between 'self and others' to the interpersonal communication between TT members. The study concludes that a psychosocial approach to community development is essential in order to conflate macro-social dynamics and psychological processes that may obstacle grassroots social movements to thrive. Skills from psychosocial disciplines are a unique set that could facilitate communication and relational processes for community development, and ultimately enabling social change.

Keywords: community development, grassroots social movements, psychosocial approaches, Transition Towns

Procedia PDF Downloads 118
5856 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 147
5855 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 301
5854 Chaotic Control, Masking and Secure Communication Approach of Supply Chain Attractor

Authors: Unal Atakan Kahraman, Yilmaz Uyaroğlu

Abstract:

The chaotic signals generated by chaotic systems have some properties such as randomness, complexity and sensitive dependence on initial conditions, which make them particularly suitable for secure communications. Since the 1990s, the problem of secure communication, based on chaos synchronization, has been thoroughly investigated and many methods, for instance, robust and adaptive control approaches, have been proposed to realize the chaos synchronization. In this paper, an improved secure communication model is proposed based on control of supply chain management system. Control and masking communication simulation results are used to visualize the effectiveness of chaotic supply chain system also performed on the application of secure communication to the chaotic system. So, we discover the secure phenomenon of chaos-amplification in supply chain system

Keywords: chaotic analyze, control, secure communication, supply chain attractor

Procedia PDF Downloads 512
5853 The Molecular Characteristic of Heliotropium digynum in Saudi Arabia by Inter-Simple Sequence Repeat (ISSR) Analysis

Authors: Mona Alwhibi, Najat Bukhary

Abstract:

Heliotropium digynum, a member of Boraginaceae family, the growth of the plant, as well as its size, length of inflorescence, and speed of development depends on the amount of rain in its habitat. In this study, we studied the applicability of inter-simple sequence repeat (ISSR) polymorphism in Heliotropium digynum in a different region of Saudi Arabia. We found that. ISSR analysis using 15 primers were used for ISSR-PCR optimization trials, five primers (UBC810, UBC811, UBC818, UBC834, and UBC849) which gave the best amplification results produced a total of 43 polymorphic bands. The number of polymorphic loci was 20 and the percentage of polymorphism was 90.47%. The similarity result indicates the presence of a high-level genetic diversity between populations and a dendrogram constructed by UPGMA method.

Keywords: genetic differentiation, genetic diversity, Heliotropium digynum, ISSR

Procedia PDF Downloads 478
5852 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 110
5851 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 135
5850 A Post-Occupancy Evaluation of LEED-Certified Residential Communities Using Structural Equation Modeling

Authors: Mohsen Goodarzi, George Berghorn

Abstract:

Despite the rapid growth in the number of green building and community development projects, the long-term performance of these projects has not yet been sufficiently evaluated from the users’ points of view. This is partially due to the lack of post-occupancy evaluation tools available for this type of project. In this study, a post-construction evaluation model is developed to evaluate the relationship between the perceived performance and satisfaction of residents in LEED-certified residential buildings and communities. To develop this evaluation model, a primary five-factor model was developed based on the existing models and residential satisfaction theories. Each factor of the model included several measures that were adopted from LEED certification systems such as LEED-BD+C New Construction, LEED-BD+C Multifamily Midrise, LEED-ND, as well as the UC Berkeley’s Center for the Built Environment survey tool. The model included four predictor variables (factors), including perceived building performance (8 measures), perceived infrastructure performance (9 measures), perceived neighborhood design (6 measures), and perceived economic performance (4 measures), and one dependent variable (factor), which was residential satisfaction (6 measures). An online survey was then conducted to collect the data from the residents of LEED-certified residential communities (n=192) and the validity of the model was tested through Confirmatory Factor Analysis (CFA). After modifying the CFA model, 26 measures, out of the initial 33 measures, were retained to enter into a Structural Equation Model (SEM) and to find the relationships between the perceived buildings performance, infrastructure performance, neighborhood design, economic performance and residential Satisfaction. The results of the SEM showed that the perceived building performance was the most influential factor in determining residential satisfaction in LEED-certified communities, followed by the perceived neighborhood design. On the other hand, perceived infrastructure performance and perceived economic performance did not show any significant relationship with residential satisfaction in these communities. This study can benefit green building researchers by providing a model for the evaluation of the long-term performance of these projects. It can also provide opportunities for green building practitioners to determine priorities for future residential development projects.

Keywords: green building, residential satisfaction, perceived performance, confirmatory factor analysis, structural equation modeling

Procedia PDF Downloads 233
5849 Standardization of the Behavior Assessment System for Children-2, Parent Rating Scales - Adolescent Form (K BASC-2, PRS-A) among Korean Sample

Authors: Christine Myunghee Ahn, Sung Eun Baek, Sun Young Park

Abstract:

The purpose of this study was to evaluate the cross-cultural validity of the Korean version of the Behavioral Assessment System for Children 2nd Edition, Parent Rating Scales - Adolescent Form (K BASC-2, PRS-A). The 150-item K BASC-2, PRS-A questionnaire was administered to a total of 690 Korean parents or caregivers (N=690) of adolescent children in middle school and high school. Results from the confirmatory and exploratory factor analyses indicate that the K BASC-2, PRS-A yielded a 3-factor solution similar to the factor structure found in the original version of the BASC-2. The internal consistencies using the Cronbach’s alpha of the composite scale scores were in the .92~ .98 range. The overall reliability and validity of the K BASC-2, PRS-A seem adequate. Structural equation modeling was used to verify the theoretical relationship among the scales of Adaptability, Withdrawal, Somatization, Depression, and Anxiety, to render additional support for internal validity. Other relevant findings, practical implications regarding the use of the KBASC-2, PRS-A and suggestions for future research are discussed.

Keywords: behavioral assessment system, cross-cultural validity, parent report, screening

Procedia PDF Downloads 486
5848 A Cosmic Time Dilation Model for the Week of Creation

Authors: Kwok W. Cheung

Abstract:

A scientific interpretation of creation reconciling the beliefs of six literal days of creation and a 13.7-billion-year-old universe currently perceived by most modern cosmologists is proposed. We hypothesize that the reference timeframe of God’s creation is associated with some cosmic time different from the earth's time. We show that the scale factor of earth time to cosmic time can be determined by the solution of the Friedmann equations. Based on this scale factor and some basic assumptions, we derive a Cosmic Time Dilation model that harmonizes the literal meaning of creation days and scientific discoveries with remarkable accuracy.

Keywords: cosmological expansion, time dilation, creation, genesis, relativity, Big Bang, biblical hermeneutics

Procedia PDF Downloads 79
5847 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 194
5846 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 182
5845 Study of seum Tumor Necrosis Factor Alpha in Pediatric Patients with Hemophilia A

Authors: Sara Mohammad Atef Sabaika

Abstract:

Background: The development of factor VIII (FVIII) inhibitor and hemophilic arthropathy in patients with hemophilia A (PWHA) are a great challenge for hemophilia care. Both genetic and environmental factors led to complications in PWHA. The development of inhibitory antibodies is usually induced by the immune response. Tumor necrosis factor α (TNF-α), one of the cytokines, might contribute to its polymorphism. Aim: Study the association between tumor necrosis alpha level and genotypes in pediatric patients with hemophilia A and its relation to inhibitor development and joint status. Methods: A cross-sectional study was conducted among a sufficient number of PWHA attending the Pediatric Hematology and Oncology Unit, Pediatric department in Menoufia University hospital. The clinical parameters, FVIII, FVIII inhibitor, and serum TNF-α level were assessed. The genotyping of −380G > A TNF-α gene polymorphism was performed using real time polymerase chain reaction. Results: Among the 50 PWHA, 28 (56%) were identified as severe PWHA. The FVIII inhibitor was identified in 6/28 (21.5%) of severe PWHA. There was a significant correlation between serum TNF-α level and the development of inhibitor (p = 0:043). There was significant correlation between polymorphisms of −380G > A TNF-α gene and hemophilic arthropathy development (p = 0:645). Conclusion: The prevalence of FVIII inhibitor in severe PWHA in Menoufia was 21.5%. The frequency of replacement therapy is a risk factor for inhibitor development. Serum TNF-α level and its gene polymorphism might be used to predict inhibitor development and joint status in pediatric patients with hemophilia A.

Keywords: hemophilic arthropathy, TNF alpha., patients witb hemophilia A PWHA, inhibitor

Procedia PDF Downloads 90
5844 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 480
5843 Costa and Mccrae's Neo-Pi Factor and Early Adolescents School Social Adjustment in Cross River State Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study examined the influence of Costa and McCrae’s Neo-PI Factor and early adolescent’s school social adjustment in Cross River State, Nigeria. The research adopted the causal-comparative design also known as the ex-post facto with about one thousand and eighteen (1,018) students who were randomly selected from one stream of JSS 1 classes in 19 schools out of seventy-three (73) in the study area. Data were collected using two instruments one is the NEO-PI scale, and students school social adjustment questionnaire. Three research questions and three research hypotheses were postulated and tested at 0.05 level of significance. The analysis of data was carried out using both the independent t-test statistics and the one-way analysis of variance (ANOVA). The analyzed result indicated that the five dimensions had a significant influence on students school social adjustment. A post hoc was equally carried out to show the relative significant difference among the study variables. In view of the above, it was recommended that teachers, parents and educational psychologists should be involved to enhance students the confidence to overcome their social adjustment problem.

Keywords: Costa and McCrae’s NEO-PI Factor, early adolescents, school, social adjustment

Procedia PDF Downloads 143
5842 Study of the Responding Time for Low Permeability Reservoirs

Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo

Abstract:

One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.

Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation

Procedia PDF Downloads 494
5841 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 154
5840 Effect of Modulation Factors on Tomotherapy Plans and Their Quality Analysis

Authors: Asawari Alok Pawaskar

Abstract:

This study was aimed at investigating quality assurance (QA) done with IBA matrix, the discrepan­cies observed for helical tomotherapy plans. A selection of tomotherapy plans that initially failed the with Matrix process was chosen for this investigation. These plans failed the fluence analysis as assessed using gamma criteria (3%, 3 mm). Each of these plans was modified (keeping the planning constraints the same), beamlets rebatched and reoptimized. By increasing and decreasing the modula­tion factor, the fluence in a circumferential plane as measured with a diode array was assessed. A subset of these plans was investigated using varied pitch values. Factors for each plan that were examined were point doses, fluences, leaf opening times, planned leaf sinograms, and uniformity indices. In order to ensure that the treatment constraints remained the same, the dose-volume histograms (DVHs) of all the modulated plans were compared to the original plan. It was observed that a large increase in the modulation factor did not significantly improve DVH unifor­mity, but reduced the gamma analysis pass rate. This also increased the treatment delivery time by slowing down the gantry rotation speed which then increases the maximum to mean non-zero leaf open time ratio. Increasing and decreasing the pitch value did not substantially change treatment time, but the delivery accuracy was adversely affected. This may be due to many other factors, such as the complexity of the treatment plan and site. Patient sites included in this study were head and neck, breast, abdomen. The impact of leaf tim­ing inaccuracies on plans was greater with higher modulation factors. Point-dose measurements were seen to be less susceptible to changes in pitch and modulation factors. The initial modulation factor used by the optimizer, such that the TPS generated ‘actual’ modulation factor within the range of 1.4 to 2.5, resulted in an improved deliverable plan.

Keywords: dose volume histogram, modulation factor, IBA matrix, tomotherapy

Procedia PDF Downloads 172
5839 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 248
5838 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling

Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines

Abstract:

The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.

Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances

Procedia PDF Downloads 152